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Summary  
The aim of this study is to demonstrate that Bayesian decision theory and value-of-information 

analysis is a valuable and practical framework within which two conceptually separate decisions 

problems can be addressed:  (i) the selection of the optimal treatment strategy given existing 

information, and (ii) identification of the worth of further information collection to inform this 

choice in the future. The specific objectives were: (1) to combine prior decision theoretic 

modeling with patient level trial data, and (2) to relax the restrictions of using conjugate prior 

distributions and a parametric approach to value of information analysis by using numerical 

methods to estimate posterior probabilities. 

 

Within this study these methods were developed in the context of two specific decision problems 

for which published evaluations exist. Both applications used patient level data on costs and 

effects from recent trials. This enabled an analysis of the decision uncertainty and the value of 

information both before (retrospectively) and after these trials were conducted.  The analysis 

provides some assessment of whether these trials were worthwhile and whether additional 

evidence may still be required. 

 

The first application evaluates the decision uncertainty and value of information surrounding the 

choice between low and high dose lisinopril before and after “The Assessment of Treatment with 

Lisinopril and Survival” (ATLAS) trial was conducted and reported (Packer et al 1999). The 

second application evaluates the decision uncertainty and value of information surrounding the 

choice between standard care and pre-operative optimisation using the inotropes, adrenaline or 

dopexamine for high risk patients undergoing major elective surgery before and after the most 

recent trial (Wilson et al 1999) was conducted and reported.  

 

This introductory section provides a brief overview of the common methodological background 

to this work, an introduction to each of the clinical applications, and an overview of the stages of 

analysis followed in each of the applications.  A brief summary of the results of each application 

is followed by a discussion of the common issues, which are raised by these applications.  

Finally we provide an overview of our dissemination of this work through conferences, seminars, 

workshops, and plans for the submission of three papers to peer-reviewed journals. Full details 

of the analysis of each of these clinical applications including the particular methods adopted, 

the characterisation of pre-trial evidence, the analysis of the trial data, the results and discussion 

of the results are fully reported in Parts I and II of this report, which are intended to be research 

reports in their own right. 
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1.  Introduction 
The aim of this study was to demonstrate that Bayesian decision theory and value-of-

information analysis is a valuable and practical framework within which two conceptually 

separate decisions problems can be addressed:  (i) the selection of the optimal treatment 

strategy given existing information, and (ii) identification of the worth of further information 

collection to inform this choice in the future. The value of conducting additional research to 

inform particular clinical decision problems is of general interest. It has implications for the 

design, conduct and interpretation of research, as well as the more general policy issue of 

setting priorities in clinical research and development.  These issues are also at the heart of the 

current international debate about the appropriate regulation of new health care technologies 

(Claxton 1999a; and Neumann et al., 2000). Bayesian decision theory and value-of-information 

analysis is a useful analytic framework for analysts, designing and conducting research, for 

clinical decision makers interpreting the results of research and for policy makers, considering 

research priorities and the appropriate regulation/reimbursement of new technologies.  This 

study demonstrates the benefits and the practicality of this approach by applying it to two clinical 

decision problems: i) low or high doses of the angiotensin converting enzyme (ACE) inhibitor 

lisinopril in chronic heart failure; and ii) standard care or a policy of pre-operative optimisation, 

employing dopexamine or adrenaline, for patients undergoing major elective surgery. 

 

2.  Methodological background 
A Bayesian decision theoretic framework for the evaluation of health care programmes has 

previously been presented (see Claxton and Posnett, 1996; Claxton, 1999b; and Claxton et al., 

2000a). The framework suggests that an economic choice between mutually exclusive health 

care programmes should be distinguished from the conceptually separate question of whether 

more information should be acquired to inform this decision in the future.  Within this framework 

the choice between programs should be based on expected utility (in our analysis, net benefit) 

and the only valid reason to consider the uncertainties surrounding the outcome of interest to 

establish the value of acquiring additional information by conducting further research.  In this 

sense Bayesian (as well as Frequentist) inference, including ranges of equivalence and 

benchmark error probabilities, are not useful or consistent with rational decision making.  The 

possibility of using Bayesian decision theory to establish expected utilities for alternative 

treatment strategies has been accepted as a rational basis for decision making for some time 

(Lindley 1994; and Berry 1994).  Establishing the prior and posterior distribution of expected 

utility (or net benefit) may be irrelevant to the adoption decision but is essential in deciding 

whether further clinical research should be conducted and how this should be designed.  This 
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decision problem is either ignored or remains implicit in both Bayesian and Frequentist 

inference.  However, Bayesian  decision theory and value-of-information analysis provides an 

explicit and rigorous framework within which both of these decision problems posed in health 

technology assessment can be addressed.      

 

Information is valuable because it reduces the expected costs of uncertainty surrounding a 

decision regarding service provision.  The expected cost of uncertainty is determined by the 

probability that a treatment decision based on existing (prior) information will be wrong and the 

consequences of a wrong decision (loss function). The expected costs of uncertainty can also 

be interpreted as the expected value of perfect information (EVPI) because perfect information 

would, by definition, eliminate all uncertainty surrounding the decision  It is also the maximum a 

decision maker should be willing to pay for additional evidence to inform this decision in the 

future (see Claxton and Posnett, 1996; Thompson and Graham 1996; and Thompson and 

Evans, 1997). If the EVPI exceeds the expected costs of additional research then it is potentially 

cost-effective to acquire more information by conducting additional research.

This study builds on the large body of Bayesian biostatistics literature (Spiegelhalter and 

Freedman, 1988; Breslow 1990; Spiegelhalter et al., 1994; Berry and Stangl, 1996; Abrams and 

Jones, 1997; Abrams and Sanso, 1998; and Spiegelhalter et al, 1999). Whilst these Bayesian 

approaches to individual clinical trials have considered specific aspects of design, monitoring 

and interpretation, they have not necessarily considered the trials in a wider  context.  The same 

position is also true for most meta-analyses of clinical trials. Whilst some of these have even 

considered a variety of outcome measures (for example Bhuta and Henderson-Smart, 2000),  

both harmful and efficacious, few attempts have been made to formally consider the various 

health care policy options within a decision modeling  framework (Sutton et al, 1999). Therefore, 

the next logical step is to conduct a fully Bayesian decision theoretic analysis, of which there 

have been relatively few (Parmigiani et al, 1997), which uses all currently available prior 

evidence to identify the most cost-effective health care policy, and the rationale for, and value of 

a future trial if considered necessary.   

Bayesian decision theory and value of information analysis has a firm grounding in statistical 

decision theory (see  Raiffa and Schlaifer (1959); Raiffa (1968); Pratt et al., 1995; and others), 

and has been used in other areas of research including engineering (see Howard, 1966) and 

environmental risk assessment (see Thompson and Evans, 1997; and Hammitt. and Cave, 

1991).  Some early attempts to use Bayesian decision theory in the analysis of clinical trials 

failed due partly to the exclusion of an economic input into the analysis (see Armitage, 1985). 
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More recently a Bayesian decision theoretic framework for the evaluation of health care 

programmes has been presented  (see Claxton and Posnett, 1996; and Claxton, 1999b) and 

some applications have emerged (see Fenwick et al., 2000; Claxton et al., 1999; and Claxton et 

al., 2000b). However this recent work has been restricted to prior analysis of decision problems 

or has used normal prior distributions for net benefit to establish the efficient design and value of 

conducting further clinical trials.   

 

3 Summary of the analysis 
The two applications of Bayesian decision theory and value of information analysis in this study 

share common objectives, methodological framework and sequence of analysis as outlined 

below. 

 

3.1 Objectives 
The aim of this study is to demonstrate that Bayesian decision theory and value-of-information 

analysis is a valuable and practical framework within which two conceptually separate decision 

problems can be addressed: (i) the selection of the optimal treatment strategy given existing 

information, and (ii) identification of the worth of further information collection to inform this 

choice in the future. The specific objectives of the study are: 

i) To a conduct fully informed Bayesian analyses by combining pre-trial decision 

theoretic modelling with patient level data. 

ii) To relax the restrictions of using normal prior distributions for net benefit and 

parametric approaches for value of information analysis by using numerical methods 

to estimate posterior distributions and a non parametric approach to EVPI.  

iii) To conduct this analysis in the context of two specific clinical decision problems for 

which published trial-based evaluations exist. 

To provide a description of the analyses undertaken in such a way as to assist others 

undertaking Bayesian economic evaluation in other decision contexts. 

3.2 Clinical applications 
The applications selected for this study, differ in a number of important respects, most notably: 

the size of each of the trials; the amount and quality of evidence available before the most 

recent trials were conducted; the size of the eligible patient population; the number of alternative 

interventions to be compared and the opportunities for subgroup analysis. However, both 

applications provided access to patient level data on costs and effects from recent trials. 

  

3.2.1 Application I  
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Low versus high doses of the angiotensin converting enzyme (ACE) inhibitor lisinopril in chronic 

heart failure. 

 

This application evaluates the decision uncertainty and value of information surrounding the 

choice between low and high dose lisinopril before and after the Assessment of Treatment with 

Lisinopril and Survival (ATLAS) trial was conducted and reported.   

 

The ATLAS study was an international trial undertaken in 19 countries to compare low doses 

and high doses of the ACE inhibitor lisinopril (ZestrilTM) in the treatment of chronic heart failure 

(see Packer et al., 1999). Patients with Class II-IV heart failure and left ventricular ejection 

fraction equal to or below 30% were recruited.  Exclusion criteria included acute myocardial 

infarction, unstable angina or a revascularisation procedure in the preceding two months; the 

presence of symptomatic ventricular tachycardia; unstable congestive heart failure; and the use 

of various negatively or positively isotropic drugs. Following an initial open-label period to 

establish tolerance of a daily dose of 12.5 to 15 mg of the ACE inhibitor, lisinopril, 3164 patients 

were randomly allocated, double-blind, to a high-dose strategy (daily target dose 32.5-35.0 mg, 

n=1568) or low-dose strategy (daily target dose 2.5-5.0 mg, n=1596) of lisinopril.  After a median 

follow-up of 46 months (range 39 to 58 months), there was an 8% lower risk of death in the 

high-dose group.  Patients in the high dose group also had a 12% lower risk of death or 

hospitalisation for any reason.  Although patients in the high-dose group experienced more 

events related to hypertension and renal impairment, these adverse events were generally 

successfully managed by adjusting therapy.  The proportions  of patients stopping medication 

due to adverse events were similar (17% high-dose; 18% low-dose).  Heart failure symptoms 

improved with both high- and low-dose therapy, with no between-group differences during the 

study.   

In addition to mortality and morbidity data, information on the key health service resources 

consumed by ATLAS study patients was also collected over four years of patient follow-up.  

Data were collected on the number and cause of hospital in-patient days and day-case visits. 

Details of each patients dose of study medication were collected over the full period of follow-up, 

enabling the calculation of the total amount of study medication taken.  Information on the use of 

concomitant ACE inhibitors was also collected. An economic sub-study used these resource 

data to estimate the differential cost and cost-effectiveness of high- and low-dose lisinopril on 

the basis of UK health care costs (see Sculpher et al. 2000). 

 

Before the ATLAS trial the comparative costs and effects of high versus low doses had not been 
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tested adequately in a randomised controlled trial. Of the 5 studies that had previously 

compared low and high doses of ACE inhibitors in heart failure, all focused on physiological and 

symptomatic effects and were considered too small to evaluate differences between low and 

high doses on the risk of major clinical events. The majority of randomised trials undertaken 

before ATLAS were designed to determine if (as opposed to how) ACE inhibitors should be 

used in the treatment of heart failure .  

 

The full details of this clinical application including the particular methods adopted, the 

characterisation of pre-trial evidence, Bayesian analysis of the ATLAS data, the results and 

discussion are fully reported in Part I of this report. 

 

3.2.2 Application II  
A policy of pre-operative optimisation employing dopexamine or adrenaline for high risk patients 

undergoing major elective surgery. 

 

This application evaluates the decision uncertainty and value of information surrounding the 

choice between standard care and pre-operative optimisation, using the inotropes adrenaline or 

dopexamine, for high risk patients undergoing major elective surgery both before and after the 

most recent trial (Wilson et al 1999) was conducted and reported. 

 

A randomised controlled trial (Wilson et al 1999) assessed the implications of pre-operative 

optimisation of oxygen delivery. Such pre-operative management involves admitting high-risk 

elective patients to intensive care; inserting a pulmonary artery catheter to monitor cardiac 

index; and administering inotropes to achieve target oxygen delivery before surgery. This trial, in 

high risk patients undergoing major elective surgery, measured outcomes in terms of mortality 

and complications compared to standard care but also compared the inotropes, adrenaline and 

dopexamine, in terms of these outcomes.  Hence, 46 patients were randomised to pre-

optimisation with adrenaline, 46 to pre-optimisation with dopexamine and 46 to a usual care 

control group.  The study found a mortality benefit to patients in the pre-optimisation groups 

(3/92 versus 8/46), and a lower rate of complications in the dopexamine group compared to the 

adrenaline group.  

 

The study also found some important differences in resource use between the three groups.  In 

particular, the use of dopexamine was associated with a lower length of stay in hospital.  

Although there was no prospective collection of economic data within the trial, the resource use 
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data for all patients were ascertained via retrospective interrogation of patient’s notes up to a 

fixed period of 6 months following randomisation. 

 

Previous to the Wilson et al (1999) trial, a US randomised trial had compared standard patient 

management with a deliberate policy of pre-operative management using dopexamine in high-

risk patients. The results indicated mortality and morbidity benefits associated with a deliberate 

policy of pre-operative management. These results were replicated in a U.K. trial in 1993. In 

addition, the trials provided some evidence that the use of pre-operative management reduced 

hospital costs and constituted a cost-effective method of managing high-risk surgery. However, 

the results of these trials have not had a major influence on surgical management in the U.K. 

 

The full details of this clinical application including the particular methods adopted, the 

characterisation of pre-trial evidence, Bayesian analysis of the trial data, the results and 

discussion are fully reported in Part II of this report. 

 

3.3 Overview of methods 
We have applied the Bayesian decision theoretic approach outlined in Section 2 to both clinical 

applications detailed above. The methods used and the sequence of analysis is common to 

both. The differences between these applications, including the quality of prior (pre-trial) 

information, the size of the trials; and the size of the eligible patient population, help to 

demonstrate the importance of these factors in determining the decision to adopt a new 

technology and the decision to acquire more information to inform this choice in the future. 

In each case patient level clinical trial data were available for the most recent trials, including 

data on economic as well as clinical endpoints. This enabled an analysis of the decision 

uncertainty and the value of information both before (retrospectively) and after these trials were 

conducted, providing some assessment of whether these trials were worthwhile and whether 

additional evidence may still be required. This required the uncertainty surrounding these 

decisions to be fully characterised before and after each of these trials.   

 

The prior (pre-trial) uncertainty in both cases was characterised by developing pre-trial decision 

analytic models, which were populated with prior distributions based on the evidence available 

prior to the trial.  The decision uncertainty following each of the most recent trials requires the 

patient-level data from the trials to be combined with the prior evidence from the pre-trial models 

to form posterior distributions for cost and outcomes. In both cases numerical methods (Markov 

Chain Monte Carlo simulation) were used to update the priors generated by the decision 
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analytic model with the clinical trial data. In each case the decision uncertainty before and after 

the trials is presented in the form of prior and posterior cost-effectiveness acceptability curves.  

Value-of-information analysis has also been conducted before and after the trial to establish 

whether the original trials appeared to be worthwhile and to establish, now that these trails have 

been conducted, whether further evidence may still be required to support the adoption 

decision.  The analysis of each for the clinical applications follows the following four stages: 

 

i) Prior analysis of the decision problem (pre-trial modelling).  

The first task undertaken was to model the clinical decision problem, identify the key 

parameters, and assign prior distributions to characterise the quantity and quality of prior 

information which was available before the trial was conducted.  These prior distributions 

are propagated through the pre-trial decision analytic model using Monte Carlo simulation. 

The results of the simulation are used to establish, prior to the trials being conducted, the 

optimal adoption decision, and to characterise the uncertainty surrounding the adoption 

decision using cost-effectiveness acceptability curves. 

 

ii) Analysis of the value of information.  

The pre-trial models were used to establish the expected value of perfect information 

surrounding the adoption decisions for a range of cost-effectiveness thresholds. These 

estimates of EVPI represent the maximum returns which could have been expected from 

conducting  an additional trial. If the EVPI exceeds the costs of conducting further research, 

then additional investigation was at least potentially worth while. This type of analysis 

provides a necessary, although not sufficient, condition for conducting further research.  It is 

used to establish whether, on the basis of the existing pre-trial evidence, the trials which 

were conducted were potentially cost-effective. 

 

iii) Posterior analysis of the decision problem.  

The clinical trial data are then used to update the pre-trial model to obtain posterior 

distributions for costs, effects and net benefit.  The prior distributions from the pre-trial model 

are updated with the patient level data from the trials using Markov Chain Monte Carlo 

simulation implemented in Win BUGS.  This analysis provides fully informed posterior 

distributions for costs, effects and net benefit.  The initial prior adoption decision can be 

revised in using these posteriors and the uncertainty surrounding this revised adoption 

decision is presented in the form of posterior cost-effectiveness acceptability curves. 
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iv) The iterative process of health technology assessment.  

Finally we use the updated (posterior) model to establish the value of acquiring further 

information by commissioning additional research.  The posterior distributions from iii) were 

used as the prior information when considering this next round in the iterative process of 

health technology assessment. Once again the expected value of perfect information for the 

decision problem is established to determine whether further evidence may still be required 

to support the adoption decision.  

 

The analysis and results for each of the clinical applications are detailed in Part I and II of this 

report.  Each application addresses the iterative process, which is common to the assessment 

of any health technology, where a sequence of decisions must be made: an initial adoption 

decision based on prior information; a decision to conduct further research; revising the 

adoption decision in the light of the results of the research and then considering once again 

whether further investigation is worth while.  The analysis of each clinical application 

demonstrates that an explicit and rational approach to the sequence of decisions in health 

technology assessment is possible, valuable and practical. 

 

4 Summary of results 
Both applications demonstrate that there was substantial value of information surrounding these 

decision problems before each of the most recent trials were conducted.  In each case the 

additional evidence from the trial could be combined with the prior decision analytic modelling 

using numerical methods and a number of possible models.  The posterior analysis did not 

necessarily change the adoption decisions but the incorporation of the trial evidence with the 

prior decision analytic models did change the decision uncertainty and therefore the value of 

information. The applications also demonstrate that although additional evidence may reduce 

parameter uncertainty this does not necessarily mean that decision uncertainty and the value of 

information will also be reduced.      

 

4.1 Low dose or high doses of the ACE inhibitor lisinopril in chronic heart failure 
The prior and posterior estimates of expected costs and life-years suggests that high-doses of 

lisonopril was the optimal decision before and after the ATLAS study was conducted. In fact a 

comparison of mean cost and life-years indicates that high-dose dominated low-dose treatment 

(less costly and more effective) in both the prior and posterior analyses. The posterior cost-

effectiveness acceptability curves indicated that, while there while there was slightly greater 

decision uncertainty about whether high dose was cost saving in comparison with the prior, 
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there was also less uncertainty in the adoption decision provided the decision maker is prepared 

to pay over £1000 per additional life-year gained. Despite the higher posterior uncertainty for 

certain threshold values of a life-year gained, the variance around the estimates of cost and 

effect was significantly reduced in the posterior analysis. As a result the posterior EVPI 

estimates were lower than the prior EVPI over the entire range of threshold values. The 

posterior EVPI indicated that the evidence from the pre-trial analysis combined with the 

additional information from the ATLAS trial had resolved a significant amount of the uncertainty 

underlying this decision and additional clinical trials are unlikely to be worth while. Furthermore 

the results demonstrate that a fully Bayesian analysis is needed because failure to consider the 

prior (pre-trial) information would significantly overestimate uncertainty and the value of 

additional research in this area. 

 

4.2  Pre-operative optimisation employing dopexamine 
Although both the prior (pre-trial) analysis and posterior analysis of the trial suggests that pre-

operative optimisation employing either inotrope is expected to dominate standard patient 

management, the prior and posterior decisions about which inotrope should be used in pre-

optimisation did depend upon the value of the cost-effectiveness threshold. Whilst the most 

recent trial had limited impact upon the decision to adopt pre-optimisation, the informed 

Bayesian re-analysis of the trial reduced the uncertainty surrounding the estimates of expected 

cost and expected survival duration. However, reductions in uncertainty surrounding these 

estimates do not necessarily translate into reductions in decision uncertainty.  In this application, 

the fully informed Bayesian analysis demonstrated great decision uncertainty surrounding the 

choice of inotropes compared to either the pre-trial analysis or a Bayesain analysis using 

uninformative priors.  Thus the posterior EVPI was greater than either the pre-trial EVPI or the 

EVPI based on uninformative priors, over a range of cost-effectiveness thresholds. However, 

the value of information before and after the trial are such that the most recent trial appears to 

have been worthwhile and additional research still appears to be potentially cost-effective. 

 

5 Implications and future research 
This study demonstrated that a fully Bayesian decision theoretic and value of information 

analysis can be successfully applied to very different clinical applications. In both cases we have 

been able to demonstrate that using decision analytic modelling to combine evidence already 

available and characterises prior decision is a useful way to form priors for Bayesian analysis.  

Each application has also demonstrated that when updating prior distributions generated by pre-

trial modelling we do not need to be restricted to cases of conjugacy.  In both cases priors were 
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not conjugate and numerical methods using Markov Cain Monte Carlo were successfully 

implemented, demonstrating the value and practicality of such methods for future analysis.   

 

The value of information analysis also demonstrated that estimates of the expected value of 

perfect information do not need to be restricted to situations where net benefit is normally 

distributed but can easily be implemented using non parametric methods.  The results of both 

applications demonstrate that trials were valuable despite the fact that the prior adoption 

decision did not change once the prior analysis was updated with the new clinical trial data This 

value relates to the fact that the information from the trial did reduce decision uncertainty and, 

therefore, the posterior EVPI. However, the results of one of the applications also demonstrated 

that although additional evidence will reduce the uncertainty surrounding costs and effects this 

does not necessarily mean that the uncertainty surrounding the decision will fall. In this case, 

despite the fact that the trial reduced uncertainty about key parameters, the posterior value of 

information was greater than the value of information before the trial was conducted.       

 

Overall both applications have demonstrated that a Bayesian decision theory and value of 

information analysis is a useful and practical framework which addresses directly the iterative 

process of health technology assessment. This process is common to the assessment of all 

health technologies, where a sequence of decisions must be made: an initial adoption decision 

based on existing evidence; a decision to conduct further research; revising the adoption 

decision in the light of the results of the research; and then considering, once again, whether 

further investigation is worth while. This study provides retrospective analysis of two clinical 

applications which demonstrates that an explicit and rational approach to this sequence of 

decisions in health technology assessment is possible, valuable and practical. 

  

 

However, there are a number of areas where further methodological work is ongoing, which has 

limited the scope of this study. In particular: the value of information for model parameters and 

the value of sample information.   

 

This study has presented prior and posterior expected value of information for the decision 

problem as a whole.  However, it is also possible to consider the value of perfect information 

associated with each of the uncertain inputs in the decision model.  This type of analysis would 

be useful as it helps future research to focus on those parameters where more precise 

estimates would be most valuable.  However, a number of different and conflicting methods 
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have been use to establish these “partial” EVPIs and it is only very recently that appropriate 

methods have been well established (Ades et al 2003). In addition, these methods can be 

computationally intensive and pose considerable problems when correlations are generated as 

the prior model is updated.   For these reasons, opportunities to conduct this type of analysis 

have been limited in this study.  It was possible to establish the EVPI associated with model 

parameters for the pre-trial model of pre-operative optimisation.  However the structure of the 

models used to analyse trial data required the use of composite measures, which meant that the 

posterior analysis was restricted to EVPI for the decision problem as a whole. However, other 

applications, which demonstrate that this type of EVPI analysis is practical and useful will be 

forthcoming.   

 

Observing an EVPI greater than the cost of additional research provides only the necessary but 

not sufficient condition for deciding to acquire more experimental information (conducting a 

clinical trial). For a full analysis it is necessary to estimate the benefits of sampling, or the 

expected value of sample information (EVSI) for the patient population, and the cost of sample 

information, including the additional treatment and reporting cost. The difference between the 

EVSI and sampling cost is the expected net benefit of sampling (ENBS), or the societal pay-off 

to proposed research.  Estimates of the ENBS can be used to establish technically efficient 

research design in terms of optimal sample sizes, optimal sample allocation, which endpoint 

should be included and optimal follow-up periods.  This type of analysis has been conducted 

using analytic methods using assumptions of normality of net benefit (see Claxton, 1999b; and 

Claxton et al., 1999).  It is only very recently that methods for estimating EVSI from conjugate 

priors on model parameters have been presented (see Ades et al 2003 and Claxton and Ades, 

2002), and it has only recently become clear that estimating EVSI for model parameters which 

are not conjugate and require numerical methods is computationally almost infeasible using 

existing methods.  For these reasons we have not attempted to conduct this type of analysis for 

this study.      

 

6.  Dissemination strategy 
There are three broad constituencies, which must be addressed if Bayesian decision theory is to 

be used more widely and become accepted by policy makers and clinical decision makers. 

These are the audience with an interest in the methodological issues (these include 

biostatistics, health economics and decision sciences); the clinical audience interested in the 

analysis of the clinical applications; and the broader policy audience interested in the way this 

type of analysis can inform research and development priorities and regulation/reimbursement 
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issues.   

Our dissemination of this work has addressed each of these audiences through conference 

papers, published abstracts, seminars, and workshops which have used material from these 

applications.  The details of the dissemination of this work in Europe and North America is 

detailed below. In addition to this dissemination we are planning to submit a further three papers 

to peer-reviewed journals.  These include a paper reporting the results of the Bayesian analysis 

of the ATLAS trial which will be submitted to the Lancet; a methodological paper reporting the 

analysis of the pre-operative optimisation will be submitted to Medical Decision Making; and we 

also hope to develop a policy paper which will draw on both applications to discuss the broader 

policy issues that can be addressed using this approach. 

 

6.1 Conference papers 
Fenwick, E., Palmer, S., Claxton, K., Sculpher, M., Abrams, K.. and Sutton, A. An informative 

Bayesian re-analysis of a randomized controlled trial: the case of pre-operative optimization for 

patients undergoing major elective surgery. International Health Economics Association. San 

Francisco, July 2003. 

 

Fenwick, E., Palmer, S., Claxton, K. And Sculpher, M. An iterative framework for health 

technology assessment employing Bayesian statistical decision theory. International Society for 

Technology Assessment in Health Care. Canmore, July 2003. 

 

Fenwick, E., Palmer, S., Claxton, K., Sculpher M., Abrams, K., Sutton, A. An iterative approach 

to technology assessment using Bayesian methods. Medical Decision Making, Baltimore, 

October 2002. 

 

Palmer, S., Fenwick, E., Claxton, K., Sculpher M., Abrams, K., Sutton, A. A Bayesian Approach 

to Cost-Effectiveness Analysis and Value of Information Analysis in Chronic Heart Failure. 

Medical Decision Making, Baltimore, October 2002. 

 

Palmer, S., Fenwick, E., Claxton, K. and Sculpher M. Applications of value of information using 

Bayesian numerical methods. Medical Decision Making. San Diego, October 2001. 

 

Fenwick, E., Claxton, K. and Sculpher, M. A Bayesian analysis of pre-operative optimisation of 

oxygen delivery. International Health Economics Association. York, July 2001. 
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Fenwick, E., Claxton, K. And Sculpher, M. A Bayesian analysis of pre-operative optimisation of 

oxygen delivery. Medical Decision Making. Cincinnati, September 2000. 

6.2 Published abstracts   
Fenwick, E., Palmer, S., Claxton, K., Sculpher M., Abrams, K., Sutton, A. An iterative approach 

to technology assessment using Bayesian methods. Medical Decision Making, 2002 (22), 4 
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Part I 

 

A Bayesian Approach to Cost-Effectiveness Analysis and Value-of-

Information Analysis in Chronic Heart Failure: An Example Using the 

ATLAS Trial   
 
 
 
 
The aim of this study was to undertake an informed Bayesian approach to establishing the cost-

effectiveness and the expected value of perfect information (EVPI) of high versus low dose 

angiotensin-converting enzyme (ACE) inhibitors in patients with chronic heart failure. The 

Assessment of Treatment with Lisinopril and Survival (ATLAS) study was an international trial 

undertaken to compare high and low doses of the ACE inhibitor lisinopril in the treatment of 

chronic heart failure. Prior probability distributions were calculated using a stochastic model 

populated using previously published evidence including the Studies of Left Ventricular 

Dysfunction (SOLVD) . These prior distributions were combined with patient level data from 

ATLAS to generate posterior distributions of costs and outcomes using MCMC implemented 

using WinBUGS. The posterior distributions of survival were derived using a piecewise 

exponential model and the posterior distributions of costs were derived using the Lin method for 

handling censoring in cost data.  

 

Mean estimates of the difference in cost and life-years gained were used to establish the 

optimal adoption decision, before and after the ATLAS trial, based on the prior and posterior 

distributions. Uncertainty surrounding these decisions were characterised by estimating prior 

and posterior cost-effectiveness acceptability curves (CEAC). The impact of combining prior 

evidence with the new trial evidence from ATLAS on the uncertainty surrounding the adoption 

decision was demonstrated by comparing the prior and posterior EVPI.  

  

Both the prior and posterior mean estimates of costs and life-years identified high-dose as the 

optimal adoption decision. Based on a comparison of mean cost and life-years, high-dose 

dominated low-dose treatment (less costly and more effective) in both the prior and posterior 

analyses. The posterior CEAC indicated that while there while there was slightly greater 

uncertainty about whether high dose was cost saving in comparison with the prior CEAC (85% 

vs 88%), there was also less uncertainty in the adoption decision provided the decision maker is 

prepared to pay over £1000 per additional life-year gained. Despite the higher posterior 
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uncertainty for certain threshold values of life-years gained (<£1000 per life-year gained), the 

variance around these estimates was significantly reduced in the posterior analysis. As a result 

the posterior EVPI estimates were lower than the prior EVPI over the entire range of values for 

life-years, due to the reduced consequences associated with making an incorrect decision. 

 

The analysis demonstrates the value of a fully Bayesian analysis in the context of chronic heart 

failure. Although the posterior analysis did not result in a change in the adoption decision from 

that suggested by prior evidence, the posterior EVPI indicated that the evidence from the pre-

trial analysis combined with the additional information from the ATLAS trial had resolved a 

significant amount of the uncertainty underlying this decision. Furthermore, failure to consider 

the prior information would have significantly overestimated the value of additional research in 

this area .   
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1. Introduction 
The Assessment of Treatment with Lisinopril and Survival (ATLAS) study was an international 

trial undertaken to compare two dosage regimens in the treatment of chronic heart failure with 

the ACE inhibitor lisinopril (ZestrilTM)1. The study randomised 3,164 heart failure patients to 

double-blind treatment with either high (32.5-35.0 mg daily, n=1,568) or low (2.5-5.0 mg daily, 

n=1,596) doses of lisinopril. Patients were followed up for a median of 46 months (range 39-58 

months). The primary clinical outcome assessed was all-cause mortality and a separate 

economic study recorded patient level resource utilisation and cost data from a health service 

perspective2.  
 

A stochastic decision model was developed to identify the pre-trial adoption decision (based on 

mean cost and outcomes), using data available before the trial began. The pre-trial model was 

also used to generate the prior distributions for an informed Bayesian analysis of the ATLAS 

trial. The informed Bayesian analysis was used to generate posterior probability distributions for 

the costs and outcomes of the alternative dosing strategies, based on the combination of pre-

trial evidence and the patient-level trial data. Uncertainty surrounding the adoption decisions 

was characterised by estimating pre-trial and posterior cost-effectiveness acceptability curves 

for each strategy. Value-of-information analysis was undertaken to estimate the cost associated 

with the decision uncertainty (pre-trial and posterior) and was used to establish a necessary (but 

not sufficient) criterion to establish whether the collection of further information was potentially 

worthwhile. Each stage of the process is described in detail in the following sections. 

 

2. Pre-trial analysis of the decision problem 
 

2.1 Pre-trial Evidence 
Before the ATLAS trial the comparative costs and effects of high versus low doses had not been 

tested adequately in a randomised controlled trial. Of the 5 studies that had previously 

compared low and high doses of ACE inhibitors in heart failure, all focused on physiological and 

symptomatic effects and were considered too small to evaluate differences between low and 

high doses on the risk of major clinical events.3-7 The majority of randomised trials undertaken 

before ATLAS were designed to determine if (as opposed to how) ACE inhibitors should be 

used in the treatment of heart failure .  

 

Randomised studies assessing the clinical outcomes associated with the use of ACE inhibitors 

were identified from a previously undertaken systematic review 8. To reflect the evidence 
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available before the start of the ATLAS trial, only those trials reporting until the end of 1992 were 

considered in this study. In total there were 27 trials reported in English that met this constraint. 
9-35 Of these 27 trials, the results of 18 were published,9-17 19 24 26-28 32-35 whilst the results of the 

remaining 9 trials were reported in unpublished reports.18 20-23 25 29-31 

 

Of the 27 studies identified from the systematic review, only three used lisinopril . Out of the 

remaining 24 trials, two trials used benazapil, six trials used captopril, one trial used cilazapril, 

seven trials used enalapril, two trials used quinapril, and six trials used ramipril.  

 

The majority of trials only reported on short-term outcomes associated with mortality (90 days or 

less). Only 10 of the 27 trials reported outcomes beyond 90 days, and of these only 2 trials 

evaluated mortality at 1 year. The 2 studies which evaluated mortality for a follow-up period of at 

least 1 year were: (1) the Cooperative North Scandinavian Enalapril Survival Study 

(CONSENSUS) with 253 patients randomly assigned to placebo (n=126) or enalapril (n=127); 

and (2) the Studies of Left Ventricular Dysfunction (SOLVD) involving 2,569 patients randomly 

assigned to placebo (n=1,284) or enalapril (n=1,285). Only the SOLVD treatment trial evaluated 

outcomes beyond 1 year, with a mean follow-up 41.4 months (range from 22 to 55 months).  

 

Due to the extended period of follow-up reported in the SOLVD treatment trial, it was decided 

that this trial was the best source of prior information on major clinical events (including data on 

resource utilisation e.g. hospitalisations) for the planned period of follow-up in the ATLAS trial 

(which was to be completed when the last randomised patient had been followed for a minimum 

of three years or until 1600 patients had died). This decision also reflects the evidence used in 

the original design of the ATLAS trial, where the required sample size was calculated on the 

basis that the difference in mortality risk between high and low doses would be nearly identical 

to the observed differences between high doses of ACE inhibitors and placebo in the SOLVD 

trial1.  

 

In the absence of any direct evidence relating to the effectiveness or cost-effectiveness of low-

dose ACE inhibitors, we followed the same assumptions used in the sample size calculations for 

the ATLAS study (i.e. low-dose is no more effective or cost-effective than placebo) as the best 

source of prior beliefs relating to the use of low-dose ACE inhibitors. We used the placebo data 

reported in the SOLVD trial as the basis for the parameter estimates related for the low-dose 

strategy.  

 

A separate MEDLINE search for cost-effectiveness analysis studies of the use of ACE inhibitors 
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for heart failure revealed that there were no economic studies published before the start of the 

ATLAS trial in 1992. To allow for the fact that potentially useful economic data may have been 

available prior to the start of the ATLAS trial, but was not fully analysed until after this trial had 

started, the search strategy was broadened to include economic studies reporting on the cost-

effectiveness of clinical trials completed before 1992 (but which were published after 1992) . In 

addition to revising the MEDLINE search, a search of economic studies was also undertaken 

using the NHS Health Economic Evaluation Database. The searches identified three studies 

which met this criteria36-38; all three studies were retrospective cost-effectiveness analyses of 

the SOLVD treatment trial. Although none of the results of these studies were used directly to 

inform the prior estimates of the cost-effectiveness of ACE inhibitors, they were included as 

relevant data sources for the prior estimates of particular input parameters into the pre-trial 

decision-analytic model.  

 

2.2 Pre-Trial Decision Model Structure 
The pre-trial decision model was developed to estimate costs from the perspective of the UK 

National Health Service (NHS), and health outcomes in terms of life years associated with high 

and low dose ACE inhibitors . The pre-trial model was used to synthesise the relevant clinical 

and economic data sources available before the start of ATLAS. To ensure consistency 

between the pre-trial model and the economic analysis of the ATLAS trial2, a four-year time-

horizon for the pre-trial model was chosen .  

 

The pre-trial model is probabilistic in that input parameters are entered into the model as 

probability distributions to reflect second order uncertainty – that is, uncertainty in mean costs 

and outcomes, and in probabilities. Monte Carlo simulation is used to propagate uncertainty in 

input parameters through the model in such a way that the results of the analysis can also be 

presented with their uncertainty. The model has been developed in ExcelTM with the Crystal 

BallTM ‘add-on’. The Monte-Carlo simulation was run for 10,000 iterations. A 1997-98 price base 

is used, and annual discount rates of 6% for costs and 2% for benefits are adopted based on 

UK guidance.39 

 

The prior model is used to: (i) identify the optimal adoption decision based on a comparison of 

mean costs and outcomes; (ii) characterise uncertainty and quantify the costs of uncertainty 

surrounding the adoption decision for the purposes of establishing the value of obtaining 

additional information, and (iii) to generate prior estimates for the Bayesian re-analysis of the 

ATLAS trial. Stages (i) and (ii) are reported in sections 4.3-4.7. The process of generating the 

prior estimates for the informed Bayesian analysis, as part of stage (iii) is reported in detail in 
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section 6. 

   

2.3 Pre-trial model data sources 
Tables 1-3 provide a summary of the major clinical endpoints and hospitalisation data reported 

in the SOLVD treatment trial.32 This data formed the basis for estimating the parameters of the 

prior model. To estimate life-years gained from the data reported in Tables 1 and 2, the model is 

structured as a decision tree as shown in Figure 1. For both high and low dose treatment, the 

initial chance node reflects uncertainty in whether a patient survives or dies in the first year 

following treatment. Conditional upon surviving the first year, the subsequent chance nodes 

reflects the uncertainty in whether a patient survives or dies in each of the following three years. 

To incorporate the hospitalisation data into the prior model structure, the basic tree is re-

structured to include the uncertainty in whether a patient is hospitalised or not for congestive 

heart failure (CHF) and/or other non-CHF reasons conditioned upon survival status. This 

approach allowed for the different levels of uncertainty in both fatal and non-fatal hospitalisation 

rates reported during each year of follow-up in the SOLVD trial .  

 

The probabilities of death, hospitalisation for CHF and non-CHF and the proportion of patients 

taking ACE inhibitors for each of the four years of follow-up were defined as beta distributions to 

represent the uncertainty in the probability of occurrence of an event. Beta distributions were 

chosen on the basis that the parameters can be defined directly from the number of events 

reported in the main clinical paper and the resulting distributions are constrained between 0 and 

1. Uncertainty in the beta distribution is characterised by two parameters (alpha and beta). The 

alpha parameter defines the number of patients experiencing an event during each interval and 

the beta parameter is simply the total number of patients under observation at the start of each 

interval minus the number of patients experiencing an event. The parameters of the distributions 

used in the prior analysis are reported in Tables 4 & 5 for high and low-dose treatment 

respectively and the assumptions used to derive these are reported in the following sections. 

 

2.4 Pre-trial model outcomes (Life-years gained) 
The beta distributions for mortality were derived from the number of patients who die in each 

year as a proportion of patients alive and uncensored at the start of each year (hence the 

estimates were adjusted for the number of patients censored during each interval) . This data is 

taken directly from the data reported in the SOLVD trial and is derived from the numbers 

reported in Table 2 .  

 

Information relating to the timing of deaths during each annual interval in the SOLVD trial is an 
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important factor in estimating the expected survival duration. Unfortunately the timing of these 

deaths was not directly observable from the reported trial data and without direct access to the 

patient-level data an assumption was required concerning the timing of these deaths. To reflect 

the uncertainty in the timing of death during each interval a uniform distribution was assigned to 

the time of death (mean 182.5 days, minimum=0 days, maximum=365 days) for each interval. 

Survival duration for each interval was then estimated by the probability of survival/death 

weighted by the mean survival time conditional upon survival status (either 365 days for patients 

who survived each year or the expected survival time for patients who died based on the 

uniform distribution). The estimated survival time in days was discounted for each interval (2% 

per annum) and converted to an annual equivalent to provide estimates of life-years gained.  

 

2.5 Pre-trial model resource utilisation and costs 
Data on the frequency of hospitalisation for CHF and non-CHF reasons was reported in a highly 

aggregated format in the SOLVD trial. Data required for the model were: (i) the probability of 

hospitalisation during each of the four years of the model and (ii) the average number of 

hospitalisations per patient hospitalised, for CHF and non-CHF reasons, conditional upon 

survival status. Due to the constraints imposed by the reporting of hospitalisation data, several 

assumptions were required in order to provide the necessary parameter estimates for the pre-

trial model.  

 

Firstly, the data reported in Table 3 were used to determine the total number of hospitalisations 

for CHF conditional upon survival status (alive/dead). Although the exact number of 

hospitalisations could be calculated based on the numbers of patients alive or dead and 

experiencing between 0 and 3 hospitalisations, only the total number of patients experiencing 4 

or more hospitalisations were reported by vital status. Of the 683 total CHF hospitalisations in 

the enalapril group, a total of 433 hospitalisations (63%) could thus be attributed to patients 

conditional upon being alive or dead (202 and 231 respectively) and experiencing between 1 

and 3 hospitalisations . The remaining 250 hospitalisations were then apportioned pro-rata 

according to the relative number of patients alive or dead and experiencing 4 or more 

hospitalisations. This assumption was necessary in order to determine the average number of 

hospitalisations per patient hospitalised. The same procedure was followed for patients 

randomised to placebo in the SOLVD trial to derive estimates for the low-dose treatment. 

Applying this method, both the total number of hospitalisations for CHF and the average number 

of hospitalisations (per patient hospitalised) could be estimated conditional upon vital status.  

 

The probability of non-fatal CHF hospitalisation, across each of the four years of follow-up, was 
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based on the number of patients in each year experiencing (one or more) non-fatal 

hospitalisations for CHF reported in the SOLVD trial. Since no information was reported on the 

timing of fatal CHF hospitalisations, these hospitalisations were allocated pro-rata to each of the 

four years of the model according to the relative number of patients who died during each yearly 

interval .          

 

For non-CHF hospitalisations the SOLVD trial only reported the total number of hospitalisations 

for the enalapril and placebo groups. No information was provided on the allocation of non-CHF 

hospitalisations conditional upon survival status (alive/dead) or the timing of these 

hospitalisations over the follow-up period. The following assumptions were made to allocate 

non-CHF hospitalisations within the decision model. Firstly, the total number of non-CHF 

hospitalisations were apportioned to survival status using the same rate that was reported for 

fatal and non-fatal CHF hospitalisations. This assumes that the rates of hospitalisation for CHF 

and non-CHF hospitalisations follow an identical pattern across each of the years follow-up. 

Following this initial apportionment, the total number of patients hospitalised, conditional upon 

survival status, was then estimated by applying the same average number of hospitalisations 

per patient as incurred for CHF reasons. Finally, the total number of patients hospitalised for 

non-CHF reasons were then allocated pro-rata across each of the yearly intervals based on the 

relative number of patients alive (and not censored) at the end of each interval for non-fatal 

hospitalisations, and the relative number of patients who died during each interval for fatal 

hospitalisations.  

 

In addition to estimating the probability of hospitalisation during each interval and the mean 

number of hospitalisations per patient, information was also required for costing purposes on the 

mean length of stay of CHF and non-CHF hospitalisations. In the absence of any direct 

evidence from the SOLVD trial on length of hospitalisations for either CHF or non-CHF reasons, 

the mean length of stay reported in the UK Hospital Episode Statistics (HES) for heart failure 

(14.5 days) was used for CHF hospitalisations (Ref). Average per diem unit costs were then 

assigned to CHF hospitalisations in order to determine the mean costs of these hospitalisations.  

 

The HES were also used to estimate the mean length of stay for non-CHF hospitalisations 

based on following three categories reported in the SOLVD trial: angina/myocardial infarction 

(6.7 days); other cardiovascular (7.25 days) and non-cardiovascular (7.7 days). Average per 

diem unit costs were then assigned to the mean length of stay for each category. To reflect the 

uncertainty in the costs for non-CHF hospitalisation,a uniform distribution was assigned to this 

parameter, based on the minimum and maximum costs across the three categories. To ensure 



 
 
 
 

32 

consistency between the prior and posterior results we used the per diem unit costs for CHF 

and non-CHF hospitalisations reported by Sculpher et al2.  

 

In addition to inpatient hospitalisations, the following resources were also included in the 

estimates of mean costs: use of ACE inhibitors (including initiation costs); outpatient 

attendances (including diagnostic tests); and the costs of death incurred outside the hospital. 

For the use of ACE inhibitors, data from the SOLVD trial on the proportion of patients taking 

ACE inhibitors after 12, 24, 36 and 48 months were used to determine the number of patients 

continuing with medication at each annual interval. The same proportions were also applied to 

the estimates for adherence with low-dose ACE inhibitors. The doses of the study drug, 

lisinopril, were costed using British National Formulary prices40. To ensure consistency between 

the pre-trial model and the economic analysis of the ATLAS trial, patients in the high-dose group 

were assumed to need three additional visits to a general practitioner for dose titration; these 

additional vists were costed at £14 each2. The annual medication costs of ACE inhibitors were 

converted into a daily cost and multiplied by expected survival for each yearly interval (365 days 

for patients who survived and the expected mean duration of survival in each interval for 

patients who died) to calculate the mean expected cost of ACE inhibitors.  

 

No data on resource utilisation other than inpatient hospitalisations and use of ACE inhibitors 

were reported in the SOLVD trial. Data on the mean number of outpatient attendances (and 

types of diagnostic tests used) and resources associated with death outside hospitalisation were 

thus derived from the assumptions used in one of the economic studies identifed in the 

systematic review38. The mean costs of outpatient attendance were calculated in a similar 

manner to the cost of ACE inhibitors, by applying a mean daily cost to expected survival 

duration for each year, conditional upon survival status .       

 

All unit cost data used in the analysis to value resource use are shown in Table 6, together with 

the sources of those data. These unit costs are used, together with the resource use, to 

generate an overall mean cost (and standard deviation) for each of the possible pathways in 

Figure 1.  

 

2.6 Pre-trial model – Cost-effectiveness analysis 
The results of the model are presented in two ways. Firstly, mean costs and life years for high 

and low dose are presented and their cost-effectiveness compared, using the incremental cost-

effectiveness ratio (ICER). The advantage of entering input parameters as uncertain variables is 

that this uncertainty can be propogated through the model and reflected in model outputs. To 
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present the uncertainty in the cost-effectiveness of the alternative strategies, cost-effectiveness 

acceptability curves (CEACs) are used.   These show the probability that each strategy is more 

cost-effective than the other using alternative values for the maximum value the health service is 

willing to pay for an additional life-year gained in these patients.  

 

2.7 Results of the pre-trial model 
Table 4 details the results for mean costs and survival duration for each of the four-years follow-

up and in total. Mean total costs were £7519 and £8169 in the high and low-dose alternatives, 

indicating that a strategy of high-dose ACE inhibitors results in a mean saving of £650 

compared to low-dose treatment. Although the mean cost of lisinopril was higher in the high-

dose group, this additional cost was more than offset by the reduced hospitalisation costs. The 

majority of the cost savings were attributable to the lower frequency of hospitalisation for CHF in 

the initial year following treatments. Despite the high-dose group incurring higher mean costs in 

the following three years, these additional costs were more than offset by the lower cost 

incurred during the first year of the model.  

 

Mean survival duration per patient over the four-year period were estimated to be 1129 days 

(3.09 years) in the high-dose group and 1075 days (2.95 years) in the low-dose group. The use 

of high-dose ACE inhibitors resulted in an increased expected survival duration of approximately 

53 days, equivalent to an additional 0.15 life-years gained (LYG) over four-years. The 

comparison of mean costs and LYG demonstrate that the use of high-dose ACE inhibitors 

dominates low-dose (less costly and more effective) and hence that the optimal adoption 

decision, based on the assumptions used in the pre-trial model, is to select high-dose ACE 

inhibitors in the treatment of heart failure .   

 

To reflect the uncertainty in the estimates of mean costs and life-years gained, Figure 2 

presents a scatter-plot of the mean differences in cost and life-years gained between the high 

versus low-dose groups, derived from the 10,000 iterations of the Monte Carlo simulation. The x 

and y-axis divide the graph into four separate quadrants, which represent the following 

scenarios for high dose in comparison with low dose (clockwise from top right): (i) more effective 

and more costly; (ii) more effective and less costly; (iii) less effective and less costly, and (iv) 

less effective and more costly.  

 

The high concentration of points in quadrants (i) and (ii) indicate that high-dose ACE inhibitors 

appear more effective than low-dose (99.77% of iterations). Furthermore it is evident that the 

majority of the replicates lie in the quadrant (ii), where high-dose dominates low-dose (and 
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hence is cost-effective relative to low-dose) (87.93% of iterations). However, the dispersion of 

points above and below the x-axis indicates that there is some uncertainty about whether this 

gain in life-years is achieved at a lower or higher cost than low-dose treatment (88.1% of 

iterations). Clearly if the gain in life-years gained is achieved at a higher cost, then the critical 

issue that determines whether high-dose ACE inhibitors are deemed cost-effective is how much 

(if any) the decision maker is prepared to pay for an additional unit gain in health outcome.  

 

Figure 3 presents the cost-effectiveness acceptability curves for high and low dose ACE 

inhibitors. The curve indicate the probability of treatment being more cost-effective than the 

comparator for a range of potential maximum amounts a decision maker is willing to pay for an 

additional life-year gained (ceiling ratio). The x-axis shows a range of values for the ceiling ratio, 

and the y-axis shows the probability that the data are consistent with a true cost-effectiveness 

ratio falling below these ceiling amounts. 

 

The curves demonstrate that the probability of high-dose being less costly than low-dose (i.e. 

the probability of being cost-effective when the decision maker is unwilling to pay anything 

additional for an extra life-year gained) based on the prior model is 0.881%. If the decision 

maker is prepared to pay at least £10,000 per life-year gained, then the probability of the 

treatment programme being cost-effective increases to 0.998.  
 

Although uncertainty surrounding the mean estimates of costs and life-years gained do not 

affect the choice of optimal strategy (identified by a comparison of the expected values), they 

directly determine the value of obtaining further information to inform future decisions related to 

the choice between strategies .   

 

3. Value of Information Analysis for pre-trial model 

 

3.1 Methods 
The use of Monte Carlo simulation allows the expected costs of uncertainty associated with the 

initial adoption decision to be expressed as the proportion of iterations (error probability) in 

which the uncertainty within the model results in an adoption decision other than that resulting 

from maximising expected net benefits (the a-priori decision). The benefits forgone are simply 

the difference in net benefits between the optimal strategy for a given iteration and the net 

benefit of the a-priori optimal strategy in that iteration. The expectation of benefits forgone over 

all iterations represents the EVPI for a patient with heart failure. 
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The overall value of information at a population level for heart failure patients is determined by 

applying the patient level EVPI to the number of patients that would be affected by the 

information (i.e. incidence of heart failure) over the anticipated lifetime of the technology: 

∑
= +

T

t
t

t

r
I

EVPI
1 )1(

*  

 

Where I = incidence in period 

 t = period   

T = total number of periods for which information from research would be useful 

 r = discount rate 

 

 

National statistics suggest the incidence of heart failure is about one new case per 1,000 

population per year41. Based on current estimates of the UK population, this implies an annual 

incidence of around 59,987 42. Population level EVPI is estimated using this value and assumes 

that the information would be valuable for 10 years. A 6% rate of discount is applied.  

 

3.2 Results 

Figure 4 illustrates the EVPI per patient over a range of estimates for the decision maker’s 

maximum WTP (λ). At a λ value of £10,000 per LYG, the EVPI is approximately £0.67 per 

patient. This increases to £0.79 per patient when λ is £30,000 and is £1.15 when λ is £50,000. 

At a population level, the total EVPI is between £313,215 and £538,596 for values of λ between 

£10,000 and £50,000.Although the error probability associated with making an incorrect 

decision falls as the value of λ increases, the increased costs associated with making an 

incorrect decision more than outweigh this reduced error probability (resulting in an overall 

increase in the EVPI).  

 

4. Posterior analysis of the decision problem 
The next stage in the analysis is the posterior analysis of the decision between high and low-

dose ACE inhibitors. The objective was to re-address the pre-trial adoption decision regarding 

the use of high or low-dose ACE inhibitors, following the incorporation of the results of the 

ATLAS trial. Value of information analysis is then used  to formally assess the level and costs of 

uncertainty surrounding this posterior decision and to determine the potential efficiency of any 

further research that may be undertaken.  
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Patient-level data on survival and costs obtained from the ATLAS trial were  combined with the 

prior estimates from the pre-trial model to generate posterior distributions for costs and LYG. 

The WinBUGS (Windows-based Bayesian Inference Using Gibbs Sampling) computer package 

was used to undertake the Bayesian analysis43. The programme undertakes Markov Chain 

Monte Carlo simulation via the Gibbs sampling algorithm to construct updated (posterior) 

distributions44.  

 

4.1 Posterior Survival and life-years gained 
Patient level data on survival reported in the ATLAS study was either time to mortality (666 

patient in the high-dose treatment group and 717 patients in the low-dose group) or the time the 

patient was censored (902 patients in high dose and 879 patients in low-dose). To account for 

the censoring  in the time to event data, parametric survival analysis was used to calculate the 

expected mean survival duration for each group over the four-years follow-up.  

  

For each treatment group, the patient level survival data from the ATLAS trial was modelled 

using the exponential distribution. Survival data is modelled using two related functions, the 

hazard function and the survivor function45. The hazard function, h(t), is the probability that an 

individual dies at time t, given that they have survived up to that point in time. The exponential 

distribution assumes that the hazard function (h(t)=λ) is constant with respect to time . Since the 

hazard is a constant, the probability that an individual survives from the time origin to a point in 

time beyond t, is given by the survival function: 

 

S(t) = exp(-λt) 

 

Mean survival duration over the four-years follow-up can then be calculated by deriving the area 

under the survival curve: 

 

Mean survival duration = ∫
t

dttS
0

)(  

where t = time in days (4 years = 1460 days) 

 

Closer inspection of the Kaplan-Meier survival curves did not appear to support the assumption 

of a constant hazard over the entire follow-up period. To overcome this potentially limiting 

assumption, patient level survival data was modelled using a piecewise exponential distribution. 

This involves dividing the duration of follow-up into four separate yearly intervals and then 
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approximating the survival function in each period using a separate exponential function. The 

use of this distribution requires a less restrictive assumption that the hazard rate is constant 

over each interval rather than over the entire duration of follow-up. Mean survival duration for 

each yearly interval is then derived by estimating the area under the survival curve for the 

relevant interval. The total mean survival duration over the four-year follow-up is then calculated 

by summing mean survival duration across each of the yearly intervals. Mean survival duration 

was discounted using an annual rate of 2% .  
 
In the WinBUGS model the survival analysis is undertaken using the log-relative hazard form 

(i.e. lambda=logλ). Using this form the log-hazard rate (lambda) is modelled as a normal 

distribution specified by a mean and precision  for each separate interval. For the distribution of 

lambda, the mean parameter represents the expected value of the log-hazard rate, whilst the 

precision parameter represents the uncertainty surrounding the mean value. For the informed 

Bayesian analysis, prior values for the mean and precision parameters were derived from the 

conditional survival probabilities derived from the prior model. The conditional survival 

probabilities from the pre-trial model, for each interval, were then converted to a log hazard rate 

using the following formula: 

 

Log-hazard ratei = log[-log(1-Pi)/timei]         

where: Pi = probability of death during interval i,  

  timeI = length of interval i 

 

The results of the Monte Carlo simulation of the pre-trial model generated distributions for each 

conditional survival probability. Each iteration was then converted to a log-hazard rate using the 

formula to give a distribution of lambda values. The resulting distribution of lambda values was 

then used to derive the values for the mean and precision parameters. 

 

4.2 Posterior Costs 
Patient level resource use data, from a health service perspective, were recorded prospectively 

in the ATLAS trial. Detailed methods related to the measurement and valuation of resource use 

are reported elsewhere2. Resources measured included: days in hospital, day-case visits 

(defined as visits to the hospital without an overnight stay) and drug use (including additional 

dose titration visits for the patients in the high-dose group). Unit costs were based on 1997-98 

values and were derived from UK specific sources only.  
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Patients in the ATLAS trial were followed up for differential periods, so costs have been 

analysed using the method developed by Lin et al to account for the censoring in the cost 

data46. This approach to estimating mean costs combines the survivor function estimate of the 

probability of survival with the average costs assigned to each interval: 

 

)exp(ˆˆ 4

1 kk k tCC λ−= ∑ =
 

where kĈ is the average cost incurred during the interval k among patients under observation at 

the start of the interval and )exp( ktλ− is the survivor function of the probability that a patients 

survives to time k or beyond. 

 

The patient level cost data is assumed to follow a half-normal distribution (i.e. a normal 

distribution truncated at zero to avoid the possibility of negative values). Priors are then 

specified for the mean and precision parameters of the half-normal cost distributions. The mean 

represents  second order uncertainty in the costs (the variation in the mean cost). The mean of 

the log cost is modelled as a normal distribution specified by a mean and a precision.  

 

The parameters of the mean cost distribution were obtained from the results of the Monte Carlo 

simulation of the pre-trial model. The mean costs of patients surviving to the start of each 

interval were obtained from the Monte Carlo simulation of the prior model. The expected value 

for each interval, based on the 10,000 iterations, was used as the prior estimate of the mean 

parameter. Within the WinBUGS model the precision is also specified using a normal 

distribution (truncated at zero). The distribution for the precision parameter represents the first 

order uncertainty in the prior data. As a result the parameters of the precision are left vague 

because the prior model only provides an estimate of second order uncertainty. 

 
A burn-in of 10,000 updates (which are then discarded) followed by a further 10,000 updates 

were used to derive the posterior estimates for mean survival duration and costs. 

 

4.3 Posterior optimal strategy 
Table 8 details the posterior results for mean costs and life-years gained for each of the four-

years follow-up and in total.  Mean total costs were £274 lower in the high-dose treatment group 

(mean total cost = £7,079) compared to the low-dose group (mean total cost = £7,353). The 

additional costs of lisinopril in the high-dose group were more than offset by the lower costs 

associated with less frequent hospital treatment.  
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Mean survival duration per patient was 1,110 days (3.04 years) and 1,069 days (2.93 years) 

respectively in the high and low dose groups. The use of high-dose ACE inhibitors is predicted 

to result in an increased expected survival duration of approximately 41 days, equivalent to an 

additional 0.11 life-years gained (LYG) over four-years. Based on a comparison of mean costs 

and LYG, the high-dose group dominates the low-dose group by being both more effective and 

less costly. The optimal adoption decision, based on a posterior analysis of both the prior data 

and the ATLAS trial data, is to use high-dose ACE inhibitors in the treatment of patients with 

chronic heart failure .  

 

Figure 5 illustrates the uncertainty in the mean difference in costs and LYG by plotting the 

results of each of the 10,000 iterations of the WinBugs model. The combined evidence from the 

prior model and the trial data demonstrate that, while there is some uncertainty about the size of 

the effect difference between the high-dose and low-dose groups, there is clear evidence that 

this difference is almost entirely in favour of the high-dose treatment strategy The probability 

that high-dose is more effective than low-dose treatment is approximately 0.9997.  

 

There is less certainty in whether the high-dose group is less costly than the low-dose group. 

However, the majority of the posterior replicates from the WinBugs model lie below the x-axis, 

demonstrating that there is a approximately an 0.8474 probability that the high-dose group is 

less costly than the low-dose group. Considering the joint uncertainty in costs and LYG together, 

the majority of the replicates lie in the quadrant (iii) where the high-dose group dominates the 

low-dose group (84.71% of iterations). However, there also appears to be a sizeable proportion 

of replicates in quadrant (ii), where the cost-effectiveness of high-dose is dependent upon the 

decision-maker’s maximum willingness-to-pay for an additional LYG (15.22% of iterations).  

 
Figure 6 illustrates the posterior probability that high-dose treatment is more cost-effective than 

low-dose treatment across a range of threshold values for the decision-makers maximum WTP, 

presented in the form of a CEAC. The posterior CEAC demonstrates there is a 0.93 probability 

that high-dose is more cost-effective than low-dose at £1,000 per LYG. This probability rises to 

over 0.99 if the decision-maker is prepared to pay over £3,000 per LYG.  

 

5.  Posterior value of information analysis 
The posterior analysis demonstrates that the use of high-dose ACE inhibitors is the optimal 

adoption decision based on combination of both the pre-trial and the ATLAS trial evidence. The 

final stage of the posterior analysis reconsiders the value of acquiring further information by 
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commissioning additional research in light of the results of the updated (posterior) model. Once 

again the EVPI for the decision problem is established to determine the potential efficiency of 

additional research. 

 

The results of the value of information analysis of the posterior model suggests there appears 

little value in obtaining further information on the input parameters to the model (Figure 7). At a 

λ value of £10,000 per LYG, the EVPI is approximately £0.07 per patient. This increases to 

£0.11 per patient when λ is £30,000 and £0.19 per patient when λ is £50,000. At a population 

level, the total EVPI is between £31,012 and £90,502 for these values of λ.  

 

6. Discussion  
Both the prior and posterior mean estimates of LYG and costs identified the use of high-dose 

ACE inhibitors, in comparison with low-dose, as the optimal adoption decision in the treatment 

of patients with chronic heart failure. The posterior CEAcc indicated that while there while there 

appears slightly more uncertainty about whether high-dose is cost saving in comparison with the 

prior CEAcc (85% of iterations in the posterior analysis vs 88% in the prior model), there was 

now less uncertainty in the adoption decision provided the decision maker is prepared to pay 

over £1000 per LYG. Despite the higher posterior uncertainty for certain threshold values of 

LYG (values <£1000 per LYG), the variance around these estimates was greatly reduced in 

comparison to the pre-trial model results. Consequently the posterior EVPI estimates were lower 

than the pre-trial EVPI estimates over the entire range of values for LYG. The combined weight 

of evidence from both the prior model and the results from the ATLAS study appears to have 

resolved a significant amount of the uncertainty relating to the pre-trial decision. 

 

The analysis demonstrates the value of a fully Bayesian analysis in the context of chronic heart 

failure. Although the posterior analysis did not result in a change in the adoption decision from 

that suggested by prior evidence, the posterior EVPI indicated that the evidence from the pre-

trial analysis combined with the additional information from the ATLAS trial had resolved a 

significant amount of the uncertainty underlying this decision. Furthermore, failure to consider 

the prior information would have significantly overestimated the value of additional research in 

this area.  To illustrate this Figure 10 presents a comparison of the informed and uninformed 

(ignoring prior evidence) posterior EVPI estimates.  The    At a λ value of £10,000 per LYG, the 

EVPI is approximately £0.07 per patient. This increases to £0.11 per patient when λ is £30,000 

and £0.19 per patient when λ is £50,000 for the informed and uniformed posterior analyses 

respectively. At a population level, the total EVPI is between £31,012 and £90,502 for values of 
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λ between £10,000 and £50,000 in the informed posterior analysis. For comparison the total 

population EVPI for the uniformed analysis is between £1,759,555 and £8,523,723.  Hence 

ignoring the prior evidence in this analysis would potentially overestimate the uncertainty in the 

decision by between £1,728,543 and £8,433,221 for values of λ between £10,000 and £50,000. 

Despite the merits of employing an informed Bayesian approach in this analysis, there are 

several potential limitations which need to be considered in conjunction with the results 

presented here. Firstly, the pre-trial model made selective use of the prior evidence by 

considering only the results from the SOLVD treatment trial in the pre-trial model.  Although the 

SOLVD trial represents the best single source of prior information on major clinical and cost 

outcomes for the comparison between high and low dose ACE inhibitors (due to extended 

period of follow-up reported in the SOLVD treatment trial and the reporting of hospitalisation 

event data), this approach effectively ignored the information from the other studies identified in 

the systematic review. Despite this limitation it is clear that due to the size of the SOLVD trial in 

comparison to the other studies considered, the parameter estimates of the pre-trial model 

would still largely be driven by the SOLVD data.  Furthermore due to the limited follow-up of the 

other studies detailed in Section 4.1, the SOLVD trial was the only trial that provided data 

beyond 1 year.   

 

Secondly, by only considering prior data from trials reporting before the ATLAS trial started, the 

iterative approach outlined here did not consider the evidence published during the period of 

time during which the ATLAS trial was conducted. This suggests an additional step in the 

iterative approach which would require the results of the pre-trial model to be updated with the 

additional evidence from studies published during the course of the new trial.  These revised 

estimates would then form the basis of the prior evidence for the informed Bayesian analysis.    
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Table 1. Number of deaths (and causes) and number of patients who died or were 
hospitalised for CHF in SOLVD trial32 
 
Variable Enalapril 

N (%) 
Placebo 
N (%) 

Risk reduction 
(95% CI) 

Randomised patients 1285 (100) 1284 (100)  
Deaths 452 (35.2) 510 (39.7) 16 (5 to 26) 
Deaths or hosp for CHF 613 (47.7) 736 (57.3) 26 (18 to 34) 
Cardiovascular deaths 399 (31.1) 461 (35.9) 18 (6 to 28) 
Noncardiovasc deaths 49 (3.8) 53 (4.1)  
 
 

Table 2. Survival by time period 

Time Period Enalapril 
N  

Placebo 
N  

Baseline 
6 months 
12 months 
18 months 
24 months 
30 months 
36 months 
42 months 
48 months 

1285 
1195 
1127 
1069 
1010 
891 
697 
526 
333 

1284 
1159 
1085 
1005 
939 
819 
669 
487 
299 

 
 
Table 3. Frequency of hospitalisation for CHF, according to status at the end of study 
 
Status/no. of  
hospitalisations 

Enalapril 
N (%) 

Placebo 
N (%) 

Alive 
0 
1 
2 
3 
>=4 
Dead 
0 
1 
2 
3 
>=4 

 
672 (52.3) 
95 (7.4) 
31 (2.4) 
15 (1.2) 
20 (1.6) 
 
281 (21.9) 
80 (6.2) 
38 (3) 
25 (1.9) 
28 (2.2) 

 
548 (42.7) 
123 (9.6) 
48 (3.7) 
27 (2.1) 
28 (2.2) 
 
266 (20.7) 
113 (8.8) 
70 (5.4) 
32 (2.5) 
29 (2.2) 

Patients hospitalised 

At least once 
Twice or more 

 
332 (25.8) 
157 (12.2) 

 
470 (36.6) 
234 (18.2) 

All hospitalisations 
Patients dead or 
hospitalised 

683 
613 (47.7) 

971 
736 (57.3) 
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Table 4: Pathway probabilities and distributions – prior model (High Dose) 
 
Parameter Probability Alpha Beta 
Die Year 1 0.124 159 1126 
Die Year 2 0.105 118 1009 
Die Year 3 0.118 119 891 
Die Year 4 0.067 47 650 
Hospitalised CHF|Survive Yr 1 0.091 103 1024 
Hospitalised CHF|Survive Yr 2 0.053 54 956 
Hospitalised CHF|Survive Yr 3 0.003 2 695 
Hospitalised CHF|Survive Yr 4 0.009 3 330 
Hospitalised CHF|Die Yr 1 0.386 61.38 97.62 
Hospitalised CHF|Die Yr 2 0.386 45.55 72.45 
Hospitalised CHF|Die Yr 3 0.386 45.94 73.07 
Hospitalised CHF|Die Yr 4 0.386 18.14 28.86 
Hospitalised Non-CHF|Survive Yr 1 0.229 258 869 
Hospitalised Non-CHF|Survive Yr 2 0.134 135 875 
Hospitalised Non-CHF|Survive Yr 3 0.007 5 692 
Hospitalised Non-CHF|Survive Yr 4 0.038 13 320 
Hospitalised Non-CHF|Die Yr 1 0.968 154 5 
Hospitalised Non-CHF|Die Yr 2 0.968 114 4 
Hospitalised Non-CHF|Die Yr 3 0.968 115 4 
Hospitalised Non-CHF|Die Yr 4 0.968 46 1 
Proportion taking ACE inhibitors Year 1 0.88 1130.8 154.2 
Proportion taking ACE inhibitors Year 2 0.845 952.32 174.69 
Proportion taking ACE inhibitors Year 3 0.8225 833.25 176.75 
Proportion taking ACE inhibitors Year 4 0.8225 575.03 121.97 
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Table 5: Pathway probabilities and distributions – prior model (Low Dose) 
 
Parameter Probability Alpha Beta 
Die Year 1 0.157 201 1083 
Die Year 2 0.132 143 942 
Die Year 3 0.113 106 833 
Die Year 4 0.081 54 615 
Hospitalised CHF|Survive Yr 1 0.184 200 885 
Hospitalised CHF|Survive Yr 2 0.016 15 924 
Hospitalised CHF|Survive Yr 3 0.022 15 654 
Hospitalised CHF|Survive Yr 4 0 0.01 298.99 
Hospitalised CHF|Die Yr 1 0.484 97.31 103.69 
Hospitalised CHF|Die Yr 2 0.484 69.23 73.77 
Hospitalised CHF|Die Yr 3 0.484 51.32 54.68 
Hospitalised CHF|Die Yr 4 0.484 26.14 27.86 
Hospitalised Non-CHF|Survive Yr 1 0.353 384 701 
Hospitalised Non-CHF|Survive Yr 2 0.031 29 910 
Hospitalised Non-CHF|Survive Yr 3 0.043 29 640 
Hospitalised Non-CHF|Survive Yr 4 0 0.01 298.99 
Hospitalised Non-CHF|Die Yr 1 0.928 187 14 
Hospitalised Non-CHF|Die Yr 2 0.928 133 10 
Hospitalised Non-CHF|Die Yr 3 0.928 98 8 
Hospitalised Non-CHF|Die Yr 4 0.928 50 4 
Proportion taking ACE inhibitors Year 1 0.880 1129.9 154.1 
Proportion taking ACE inhibitors Year 2 0.845 916.83 168.17 
Proportion taking ACE inhibitors Year 3 0.825 774.68 164.32 
Proportion taking ACE inhibitors Year 4 0.825 551.93 117.07 
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Table 6: Unit cost and resource use estimates for prior model  

 
High Dose Estimates 
 
Item Frequency 

of use 
Unit cost or 
range 

Expected 
cost 

Period Source 

Ace Inhibitors 1 £329  £329 Per 
annum 

 

Initiation costs 1 £42 £42 Per 
annum 

 

CHF 
hospitalisations|survive 

1.87 £5,148 £9,611 Per 
event 

 

CHF 
hospitalisations|die 

2.20 £5,148 £11,345 Per 
event 

 

Non-CHF 
hospitalisations|survive 

1.87 £1,702-
£2,849  

£4,248 Per 
event 

 

Non-CHF 
hospitalisations|die 

2.20 £1,702-
£2,849 

£5,014 Per 
event 

 

Outpatient care - visits 4.00 £44.6 £178 Per 
annum 

 

Death outside hospital 1 £580.00 580 Per 
event 

 

 
Low Dose Estimates 
 
Item Frequency 

of use 
Unit cost or 
range 

Expected 
cost 

Period Source 

Ace Inhibitors 1. £329  £329 Per 
annum 

 

Initiation costs 1 £42 £42 Per 
annum 

 

CHF 
hospitalisations|survive 

1.99 £5,148 £9,611 Per 
event 

 

CHF 
hospitalisations|die 

2.10 £5,148 £11,345 Per 
event 

 

Non-CHF 
hospitalisations|survive 

1.99 £1,702-
£2,849 

£4,248 Per 
event 

 

Non-CHF 
hospitalisations|die 

2.10 £1,702-
£2,849 

£5,014 Per 
event 

 

Outpatient care - visits 4 £44.6 £178 Per 
annum 

 

Death outside hospital 1 £580.00 580 Per 
event 

 



 
 
 
 

47 

Table 7: Prior analysis - Mean costs and survival duration (days)  
 
 

Mean cost per patient 
(£) 

Mean survival duration 
(Days) 

 
 
Period High Dose Low Dose 

 
Difference 
(HD-LD) High Dose Low Dose 

 
Difference 
(HD-LD) 

Year 1 
Year 2 
Year 3 
Year 4 

2998 
2007 
1495 
1020 

4048 
1882 
1282 
957 

-1050 
125 
213 
63 

342 
297 
259 
230 

336 
282 
242 
214 

6 
15 
17 
16 

Total 7519 8169 -650 1129 1075 53 
 
 
Table 8: Posterior analysis - Mean costs and survival duration (days) 
 

Mean cost per patient 
(£) 

Mean survival duration 
(Days) 

 
 
Period High Dose Low Dose 

 
Difference 
(HD-LD) High Dose Low Dose 

 
Difference 
(HD-LD) 

Year 1 
Year 2 
Year 3 
Year 4 

2717 
1851 
1439 
1072 

3018 
1898 
1392 
1046 

-301 
-47 
47 
26 

342 
296 
254 
218 

338 
284 
241 
206 

4 
12 
13 
12 

Total 7079 7353 -274 1110 1069 41 
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Figure 1: Basic structure of prior model  
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Figure 2: Scatterplot of mean cost and effect differences – prior model 
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Figure 3: Cost-effectiveness acceptability curve for pre-trial model  
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Figure 4: Value of information analysis (EVPI per patient) for pre-trial model 
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 Figure 5: Scatterplot of mean cost and effect differences (LYG) for posterior analysis 
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Figure 6: Cost-effectiveness acceptability curve for posterior analysis  
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Figure 7: Value of information analysis (EVPI per patient) for posterior analysis  
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Figure 8: Cost-effectiveness acceptability curve comparison (pre-trial and posterior) 
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Figure 9: Value of information analysis comparison (pre-trial and posterior analysis) 
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Figure 10: Value of information analysis comparison (informed and uninformed posterior analysis)
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Part II 

 

A Bayesian approach to cost-effectiveness and value of information analysis: Application 

to a policy of pre-operative optimisation employing dopexamine or adrenaline for 

patients undergoing major elective surgery 
 
 
 
 
Tissue hypoxia is the fundamental physiological event, which leads to organ failure and death in 

critically ill patients. Hence, optimisation of tissue oxygen delivery and consumption are 

essential for reducing mortality and morbidity amongst these patients. In 1959, cardiac output 

was identified as the critical determinant of patient survival (Boyd et al.  1959), and in 1960, it 

was reported that the cardiac output and oxygen delivery associated with survivors of major 

surgery was considerably higher than for patients who died. As a result, it was suggested that 

the higher values of cardiovascular flow, observed in survivors, should become additional goals 

for peri-operative treatment for surgical patients (Bland et al.  1978).  

 

In 1988, a randomised trial compared standard patient management with a deliberate policy of 

pre-operative management using dopexamine in high-risk patients in the U.S. (Shoemaker et al. 

 1988). Such pre-operative management involves admitting high-risk elective patients to 

intensive care; inserting a pulmonary artery catheter to monitor cardiac index; and administering 

inotropes to achieve target oxygen delivery before surgery. The results illustrated mortality and 

morbidity benefits associated with a deliberate policy of pre-operative management. These 

results were replicated in a U.K. trial in 1993 (Boyd et al.  1993) (see Table 1 for details of the 

results of the studies). In addition, the trials provided some evidence that the use of pre-

operative management reduced hospital costs (Shoemaker et al.  1988; Guest et al.  1997) and 

constituted a cost-effective method of managing high-risk surgery (Guest et al.  1997). However, 

the results of these trials have not had a major influence on surgical management in the U.K. 

 

In 1999, a further trial was undertaken comparing pre-operative management, employing the 

inotropes dopexamine or adrenaline, with standard methods of management for high-risk 

patients undergoing major elective surgery. The results of the 1999 trial confirm the mortality 

and morbidity benefits identified by the previous trials.   

 

The objective of this project was to examine the information, concerning pre-operative 

optimisation (pre-op) that was in existence before and after the 1999 trial, in order to address 

the two decisions of interest to health-care decision-makers: (i) whether, given the evidence, a 
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policy of pre-operative management should have been adopted; and (ii) whether the collection 

of further information through research is potentially worthwhile. 

 

I. PRE-TRIAL ANALYSIS  
 

1. INTRODUCTION 
 

The initial stage of the analysis involved assessing the information, concerning pre-operative 

optimisation (pre-op) in existence before the 1999 trial commenced, in order to address the 

following issues: (i) whether, given the evidence, a policy of pre-operative management should 

have been adopted at that time; (ii) whether the 1999 trial was potentially worthwhile; and if so 

(iii) how that trial should have been designed. This assessment required us to assume a position 

before the 1999 trial commenced and examine the information that was available to decision 

makers at that time – that is to take a “retrospectively prospective” view. 

 

2. METHODS 
 

The initial stage of the process involved the construction and population of a model to represent 

the information position available to decision makers before the 1999 trial. The model was 

constructed within the Excel ™ computer package, incorporating the add-in programme Crystal 

Ball ™.  

 

2.1 Structuring the model 

 

Both of the original trials (Shoemaker et al.  1988; Boyd et al.  1993) compared pre-operative 

optimisation (employing the inotropic agent dopexamine to enhance oxygen delivery) with 

standard patient management for high-risk patients undergoing major elective surgery.  

 

However, before the 1999 trial, there was debate concerning whether or not to include the use 

of adrenaline as an inotropic agent to enhance oxygen delivery; this was subsequently reflected 

in the design of the 1999 trial. Therefore, a full analysis of the pre-trial uncertainty concerning 

the patient management decision required the inclusion of a strategy of pre-operative 

optimisation with adrenaline within the pre-trial model.  
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As such, the pre-trial model incorporated three strategies for patient management – pre-

operative optimisation with dopexamine (pre-opd), pre-operative optimisation with adrenaline 

(pre-opa), and standard patient management. The initial node in the decision model represents 

the surgical team’s choice of management strategy when undertaking major elective surgery 

with a high-risk patient (see figure 1). 

 

Each patient management strategy was incorporated as a separate branch following this 

decision node (see figure 2). Each branch represented the sequence of events that a patient 

might experience with each strategy, according to the assumptions of the model 1. 

 

For each treatment group, a proportion of those who undergo surgery will develop a 

complication as a result. Each patient management strategy was modelled by splitting the 

patient population according to the emergence of complications, within 28 days of surgery.  

Irrespective of the patient’s complication status, a proportion of patients will die following 

surgery. Within the model we have split mortality into surgical mortality, that occurring within 28 

days of surgery (the usual end-point employed within intensive care trials), and other mortality 

(occurring after 28 days post surgery). The other mortality is further split into three specific end-

points: mortality within six months; mortality within 1 year; and mortality 2 years post-surgery. 

These end-points were chosen to fit with the data from the 1999 trial thus simplifying the post-

trial informed analysis (see below)2. 

 

2.2 Populating the model 

 

As previously stated, the aim of the analysis was to model the information position that existed 

and was available to decision-makers before the recent trial commenced. This required us to 

take a ‘retrospectively prospective’ view. This information was identified through a search of the 

literature and, in consultation with clinical colleagues, three articles were identified as relevant to 

the decision question being addressed (see Appendix 1 for details of the search 

strategy)(Shoemaker et al.  1988; Boyd et al.  1993; Guest et al.  1997).  

 

Shoemaker et al (Shoemaker et al.  1988) detail the results of a randomised trial of pre-op 

employing dopexamine versus standard patient management in high-risk patients in the US, and 

provide a basic cost analysis. Boyd et al (Boyd et al.  1993) detail the results of a randomised 

                                                 
1 Note that whilst each management strategy has an identical sequence of possible pathways, the probability of 

the individual events occurring varies according to the strategy employed. 

2 Six months corresponds to the period to which the cost data relates, 1 year is a natural end-point, and 2 years 
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trial of pre-op employing dopexamine versus standard patient management in high-risk patients 

in the UK. Guest et al (Guest et al.  1997) provide a detailed analysis of the cost of resources 

associated with the management strategies encountered within the UK trial.  See Table 1 for a 

summary of the results from the 2 trials and the cost analysis.  

 

Due to the similarity of the setting (UK) and the pre-operative procedure employed, the UK 

studies (Boyd et al.  1993; Guest et al.  1997) were identified as the most appropriate sources of 

information. Hence, whilst populating the pre-trial model priority was given to data that 

originated from these studies (Boyd et al.  1993; Guest et al.  1997).  

 

Unless otherwise stated, the following methods were applied to both pre-opd and standard 

patient management branches of the model. Since the identified literature did not include any 

information about pre-operative optimisation with adrenaline, other methods had to be employed 

to populate the pre-opa branch of the model. These methods are detailed in a separate section 

below. 

 
2.2.1 Probabilities 

 

Decision analysis requires a probability to be associated with every possible event that patients 

might experience, conditional on the other events that occur before it. As a result, the model 

required the following probabilities: 

• probability of developing a complication, given management strategy; 

• probability of 28-day mortality, given complication status and management strategy3; 

• probability of 6 month mortality, given complication status and management strategy2; 

• probability of 1 year mortality, given complication status and management strategy2; 

• probability of 2 year mortality, given complication status and management strategy2; 

 

Beta distributions (Gelman et al.  1995; Berry and Stangl, 1996) were used to represent the 

uncertainty concerning each of the probabilities within the model. Beta distributions are specified 

by two parameters - alpha and beta, which represent the number of successes (α) and failures 

(β) within the sample (n). Thus, beta distributions can be populated directly from trial data.  

 

The size of the sample (n) is the number of patients who are exposed to the event of interest. 

The number of successes (α) is the number of patients who actually experience the event. The 

                                                                                                                                                        
corresponds to the period to which the survival data relates.  

3 Note that the mortality probabilities are conditional on being alive at the start of the period. 



 

 
 

66

number of failures (β) is the remaining patients (n-α), those that don’t experience the event. The 

probability of interest (p) is given by the proportion of successes in the exposed population (α/n), 

and is therefore restricted to a value between 0 and 1. To characterise the beta distribution any 

two of these elements (α,β,n, p) are all that is required.  

 

Probability of complication 
 

In order to characterise the uncertainty surrounding the probability of a patient developing 

complications for each management strategy, data was required concerning either the number 

(α) or probability (p) of patients experiencing at least one complication; or the number (β) or 

probability (1-p) of patients not experiencing any complications.  

 

Data is available from Shoemaker et al (Shoemaker et al.  1988) in the form of the number and 

proportion of patients, in each treatment group, experiencing 0,1,2,3 and 4+ complications 

(Table 2). However, data from Boyd et al (Boyd et al.  1993) illustrated differences in the 

average number of complications per patient in each treatment group (Table 3), with both 

groups experiencing more complications on average compared with the U.S. trial. Employing 

the assumption that the proportions experiencing 1,2,3 or 4+ complications, given at least one 

complication is experienced, are similar in the two trials, the data can be combined to determine 

the number of patients not experiencing a complication (β) subject to the constraint that the 

average number of complications is equivalent to that of the U.K. trial. 

 

Probability of 28-day mortality given complication status 
 

The structure of the model required the probability of 28-day mortality given management 

strategy and complication status. In order to characterise the uncertainty surrounding these 

probabilities, data was required concerning either the number (α) or probability (p) of patients 

dying within 28-days; or the number (β) or probability (1-p) of patients surviving to 28-days for 

each complication status and management strategy combination. 

This data was not readily available within the identified literature. However, Boyd et al (Boyd et 

al.  1993) detail the probability of 28-day mortality for all patients in each treatment group (not 

conditioned according to complication status) and data about the occurrence of complications 

conditioned upon survival status. The probability of 28-day mortality (1-p) given complication 

status can be determined from this information through the application of Bayes rule (see 

appendix 2).  
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Probability of longer term mortality given complication status 
 

The standard period for analysis in intensive care trials, is 28-days post-surgery and this is the 

time-frame used in both the U.S. and U.K. trials (Boyd et al.  1993). This implies that after 28-

days post-surgery, patients were expected to experience the same outcomes irrespective of 

complication status and treatment group. 

 

However, the 1999 trial had a follow-up of two years post surgery. For the purposes of the post-

trial analysis (see below), this was split into 4 time periods – 28-days; six months; 1 year and 2 

years2. In order to incorporate the longer time horizon into the model, standard mortality rates 

(Office for National Statistics, 1998) have been used to determine the probability of mortality in 

each of the remaining time periods. The published annual rates are converted to take account of 

the different time periods over which they apply using equation 1: 

  

 1 – (1- SMR) (no of months in period of interest/no of months in original data)  Equation 1  

 

The application of standard mortality rates within the model implies that after 28-days post-

surgery (i) the probability of mortality returns to the standard rate for a population of the same 

age, and (ii) the probability of mortality is independent of the complication status.  

 

The specification of the Beta distributions for all of the probability parameters is detailed in Table 

4. 

 
 

2.2.2 Survival 

 

In order to determine the expected survival duration associated with each management 

strategy, it is necessary to specify survival duration for every possible pathway. This is then 

used in combination with the probability associated with each pathway, to determine the 

expected survival. The process requires the derivation of a distribution of survival duration for 

each treatment group, complication status and mortality status/period combination.  

 

Where possible, patient level data has been identified and used as input into a Bayesian 

bootstrap procedure 4 (Rubin, 1981) to generate a distribution of mean survival duration. Where 

                                                 
4 The principles of Bayesian bootstrapping are similar to that of standard bootstrapping, except the draws are 

from the posterior distribution. 
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patient level data is not available, assumptions have been applied to define the distribution of 

survival duration.  

 

28 day mortality 
 

Boyd et al (Boyd et al.  1993) provide patient level data for survival duration measured up to 28-

days post-surgery. The survival duration of patients dying within 28-days post-surgery can be 

isolated from this data (Table 5). This data is then used within a Bayesian bootstrap procedure 

(1000 iterations) to provide a distribution of mean survival duration for pathways involving 

mortality within 28 days post-surgery, for both treatment groups. An empiric distribution formed 

from the bootstrap replicates provides the distribution of mean survival duration for the 28-day 

mortality pathways within the model, for each treatment group. 

 

It must be noted that all of the deaths, within the UK trial, occurred in patients who had 

developed complications post-surgery. As such, it was not possible to generate a separate 

distribution of mean survival duration for the 28-day mortality without complication pathways 

within the model. Under the assumption that survival duration (at 28-days) is identical 

irrespective of complication status, the empiric distribution generated from the patient level data 

can be applied to 28-day mortality pathways irrespective of complication status. The impact of 

this assumption on the model is negligible because the probabilities associated with 28-day 

mortality given no complication are small 5, precisely because the event had not been 

witnessed in the clinical trials (Table 4).  

 

Longer period mortality 
 

As noted above, the published trials (Shoemaker et al.  1988) (Boyd et al.  1993) only 

incorporate patient outcomes up to 28-days post-surgery whilst the 1999 trial has patient follow-

up to two years post-surgery.  

 

In order to incorporate the longer timeframe into the model, it was necessary to determine the 

distribution of expected survival duration for each of the pathways involving mortality between 

28-days and 2 years. This required the application of an assumption concerning the distribution 

of deaths over these time periods (i.e. 28 days to 6 months, 6 months to 1 year and 1 year to 2 

years). The assumption was made that the probability of dying on any particular day, within the 

period, was equal, and hence the survival duration was uniformly distributed over the time 

                                                 
5 For dopexamine the probability was calculated to be  0.005 and for standard treatment it was 0.01. 
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period. The uniform distribution is parameterised by the minimum; maximum and mean value. In 

the case of survival duration the minimum value of the distribution is taken as the last day of the 

previous period; the maximum value of the distribution is taken as the last day of this period of 

interest; and the mean of the distribution is the mid-point. For example, for pathways involving 

mortality within six months the survival duration is represented by a distribution with a minimum 

value of 28 days, a maximum value of 183 days and a mean of 105.5 days. 

 

The timeframe of the analysis is restricted to 2 years, which requires the assumption that all 

surviving patients die on the third anniversary of surgery (day 731). Hence the survival duration 

for all of these patients is 730 days.  

 

2.2.3 Costs 

 

In order to determine the expected cost associated with each patient management strategy, it 

was necessary to specify a distribution of cost for every possible pathway. This required the 

derivation of a distribution of cost for each treatment group, complication status and mortality 

status/period combination.  

 

The aim was to use patient level cost data within a Bayesian bootstrap (Rubin, 1981) in order to 

generate an empiric distribution of mean patient cost for each of these pathways. However, the 

patient level data for costs was not available. As a result, the patient level data was simulated 

from the data that was available, using Monte Carlo Simulation. This process involved 

segmenting the patient costs into the various elements of importance: (a) pre-operative cost; (b) 

intra-operative cost; (c) post-operative cost; and (d) complication cost. A  distribution was 

assigned to each of the elements of patient cost, using the available data. Monte Carlo 

simulation was then used to simulate per patient cost for each element using these distributions. 

With each individual patient represented by an iteration, in the simulation, the draws from each 

distribution represented the individual patient cost for each element. The total patient cost was 

determined by summing the cost elements across an iteration.   

 

It was not possible to distinguish between costs for survivors and non-survivors, due to the lack 

of available data. As such, the Monte Carlo simulation was used to generate cost distributions 

for each treatment group and complication status combination only. This required an 

assumption that costs were not affected directly by mortality status, although an indirect link 

remained through complications6.  

                                                 
6 This is because upto 28 days post-surgery cost; mortality and survival are all modelled separately for those with 
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(a) pre-operative cost – these costs represent the costs of resources used to manage 

patients prior to surgery. These costs include, where applicable, the costs of admitting, 

monitoring and optimising patients prior to surgery. Given the protocol for pre-operative 

management of patients, the resources employed pre-operatively are not considered to 

be uncertain7. Hence a fixed amount is specified for the pre-operative costs for each 

treatment, taken from the available literature (Guest et al.  1997). 

(b) intra-operative cost – this element relates solely to the cost of inotropes given during 

surgery. These costs are not uncertain7, hence a fixed amount is specified for the intra-

operative cost for pre-opd. These costs were included at the price applicable during the 

recent trial (dopexamine = £24.67) for each patient who received pre-opd. 

(c) post-operative cost – these costs represent the costs of resources used to manage 

patients following surgery. The resources employed post-operatively are dependant 

upon the recovery of the patient and the patient management decisions made by the 

clinical team. Hence the post-operative costs are considered to be uncertain. For each 

management strategy the post-operative cost was modelled as a lognormal distribution, 

due to the positive nature and positive skew of costs. These distributions were specified 

by the appropriate median and interquartile range reported in Guest et al (Guest et al.  

1997).  

(d) complication cost – these costs represent the costs of resources used to manage 

complications following surgery. The resources employed to manage complications are 

dependant upon the nature and severity of the complication, the recovery of the patient 

and the patient management decisions made by the clinical team. As such, the 

complication costs are considered to be uncertain. For each management strategy, the 

complication cost was modelled as a lognormal distribution, due to the positive nature 

and positive skew of costs. Data was not readily available to specify the parameters of 

these distributions. However, trial data was available concerning the numbers of each 

type of complication for each management strategy (Boyd et al.  1993 Table 3) and the 

median costs (and range) associated with managing these complications (Guest et al.  

1997 Table 4). This data was used to simulate the patient level cost of managing 

complications, through Monte Carlo simulation. Within the process, each type of 

complication was simulated separately, with the number of simulations determined by 

the number of each type of complication in each group (Boyd et al.  1993). The cost of 

managing each type of complication, in each group, was specified as a log-normal 

                                                                                                                                                        
complications. 

7 Although they may be variable and hence a candidate for sensitivity analysis. 
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distribution using data presented by Guest et al (Guest et al.  1997). Once all of the 

complications are simulated, the data for each group provides the average (and 

standard deviation) cost of managing complications in each treatment group. This data 

is used to specify the parameters of the lognormal distribution of complication cost. 

 

Following the Monte Carlo simulation, the cost profile was created for each patient. For those 

not experiencing a complication, the cost profile was derived from the summation of the pre and 

post-operative costs and, where applicable, the appropriate intra-operative cost  (see equation 

2).  

 

 Total cost no comp = pre-op cost + post-op cost (+ intra-op cost) Equation 2 

 

For those patients who experienced a complication, the cost profile included an additional cost, 

representing the average cost of managing complications in those that experience them for the 

treatment group of interest (see equation 3).  

 

 Total cost comp = total cost no comp + complication cost   Equation 3 

 

For each patient this complication cost was a combination of the average cost of complications 

for the treatment group (derived as above) and the average number of complications suffered by 

a patient with at least one complication for the treatment group (as reported in Boyd et al (Boyd 

et al.  1993) (equation 4). 

 

Complication cost tx group = average complication cost tx group  * av number of complicationstx group  

             

         Equation 4 
 

This process provided simulated total cost data for each patient in each treatment group, which 

could be used as the basis for a Bayesian bootstrap of mean cost. However, due to the size of 

the patient groups being simulated, the Monte Carlo simulation used to get the cost profiles 

involved few iterations. As such the starting value and the sequence of random numbers used 

within the simulation could potentially have a major impact upon the results8. In order to lessen 

                                                 
8 Monte Carlo simulation picks values randomly from the specified distributions. When enough iterations are 

undertaken the values selected should correspond to the probability assigned to each value. However, when the 

number of iterations undertaken is small there is a possibility that, purely by chance, all of the values picked at 

random are from one section of the distribution.  
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the impact of the starting value on the process of generating the patient cost profiles, the 

process was undertaken twenty times. Each simulation employed a different starting (seed) 

value (determined from a table of random numbers) and provided a different per patient cost 

profile (see Table 6 for an example). Each set of per patient cost profiles was then used as the 

basis of a Bayesian bootstrap (70 iterations per set) to generate mean patient costs for each 

treatment group, given complication status. The overall set of bootstrap replicates (1400) formed 

the empiric distribution of expected cost employed within the respective pathways of the model.  

 

2.2.4 Incorporating Pre-op employing adrenaline 

 
The studies identified, by the literature search, compared pre-operative optimisation (with 

dopexamine) to standard patient management. No published information was identified that 

provided details of pre-operative optimisation with adrenaline. Therefore, in order to incorporate 

this strategy into the decision model, it was necessary to make a series of assumptions to 

represent how the available data concerning pre-opd and/or standard patient management 

might be translated to reflect the impact of the pre-opa strategy.  

 

Probabilities 
 

Whilst the pre-opa strategy had not been used in practice, in order to obtain ethical approval for 

the trial, a case must have been established that suggested that the use of adrenaline, as an 

inotrope, was no worse than dopexamine. In addition, the recent clinical trial reasoned that 

adrenaline should be included within the trial because ‘inotropic agents….have different effects 

on circulation to the gut, which may possibly affect post-operative morbidity’ (Wilson et al.  

1999). 

 

As such the assumptions are made that the choice of inotrope: (i) has no direct affect upon 

mortality; and (ii) may affect the probability of complications. The impact on complications is 

modelled through the use of an adjustment factor, which determines the probability of 

complications associated with pre-opa by scaling the probability of complications associated 

with pre-opd (equation 5).  

 

Probability (complications with adrenaline) = probability (complications with dopexamine) 

       adjustment factor 

             

         Equation 5 
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Within the model, a sceptical prior is placed on the impact of adrenaline upon the probability of 

complications. This is represented by a normal distribution with an unitary mean (pre-opa is 

expected to be associated with the same probability of complications as pre-opd); and a 5% 

chance that the adjustment factor is at or below the level which would give the same probability 

of complications as standard patient management. This equates to a 5% chance that the 

probability of complications with pre-opa is less than ¾ or more than 1.5 times that associated 

with pre-opd. 

 

Costs and Effects 
 

The use of this adjustment factor directly impacts upon the proportion of patients experiencing 

each of the patient pathways. This, in turn, indirectly impacts upon the expected cost and 

expected survival duration associated with the patient management strategy.  

 
In addition, previous trials have illustrated that pre-opd is associated with a different profile of 

complications to standard patient management (Shoemaker et al.  1988; Boyd et al.  1993). 

Thus the choice of inotrope may have a direct impact upon the outcomes for patients 

experiencing a complication. In order to incorporate this impact within the model, the 

assumption is made that when the probability of complications for pre-opa is equal to or better 

(less) than that of pre-opd (i.e. the adjustment factor used was =>1), the profile of complications 

is similar to that associated with dopexamine. In this case, the assumption is made that the 

probability of 28-day mortality and the pathway survival duration for pre-opa patients, are 

equivalent to the values for pre-opd. When the probability of complications is worse (higher) 

than that for dopexamine (i.e. the adjustment factor used was < 1), the assumption made is that 

the profile of complications and patient outcomes are similar to those associated with standard 

patient management.  

 

Similar logic is used to specify the pathway costs for pre-opa patients. However, in order to 

incorporate the appropriate intra-operative cost into the pathway costs for pre-opa, it is not 

possible to use the raw pathway costs for standard patient management or pre-opd. Instead, 

two extra bootstrap distributions have to be created: one for the adrenaline patients who are 

considered to be similar to dopexamine patients; and a second for those who are considered to 

be similar to standard care patients. This involves revising the patient cost profiles and 

bootstrapping. The profiles are revised either by replacing the dopexamine cost (£24.67) with 

the cost of adrenaline (£2.35), for those patients who are considered similar to dopexamine 

patients, or by adding in the adrenaline cost, for those considered similar to standard care 

patients. These two bootstrap distributions, constructed in the same way as for pre-opd and 
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standard patients, form the cost distributions for the pre-opa pathways and are applied 

according to the adjustment factor. 

 

3. COST-EFFECTIVENESS ANALYSIS 
 
3.1 a priori 

 

Following the construction and population of the pre-trial model, the next stage of the process 

involved determining the distribution of expected cost and expected life years associated with 

each patient management strategy. As stated in section 2, this probabilistic analysis involved 

Monte Carlo simulation using Crystal Ball™.  

 

In order to compare standard patient management with a policy of pre-operative patient 

management employing either inotrope (pre-opo), a fourth pair of distributions (expected cost 

and expected survival duration) were generated. These distributions were created from those 

associated with pre-opd and pre-opa, under the assumption that patients would be assigned 

between inotropes equally.  

 

The mean values of the distributions of expected cost and expected survival duration were 

reported for each patient management strategy and the pre-opo strategy. The a priori for the 

decision between standard care and a policy of pre-operative optimisation (pre-opo), and for the 

decision between the three distinct methods of patient management were identified. Where 

appropriate, the ICER was calculated for the different methods of patient management in 

comparison with the next less effective, non-dominated alternative (Karlsson and Johannesson, 

1996). 

3.2 Uncertainty 

 

An initial assessment of the uncertainty surrounding the expected costs and expected survival 

durations associated with each strategy was provided by plotting the individual values of 

incremental cost and effect on incremental cost-effectiveness planes. For simplicity, and to 

address the two level a priori decision, pre-opo was compared to standard care, and pre-opa 

was compared to pre-opd. 

 

The uncertainty surrounding the adoption of each strategy was quantified and presented as a 

cost-effectiveness acceptability curve, and cost-effectiveness acceptability frontiers (Fenwick et 

al.  2001) were presented to illustrate the uncertainty surrounding the a priori decision.   

 



 

 
 

75

3.3 Expected value of perfect information (EVPI) 

The final stage of the analysis involved the use of value of information analysis to provide a 

formal assessment of the uncertainty surrounding the a priori decision. The EVPI was calculated 

for the decision between standard care and a policy of pre-operative optimisation employing 

either inotrope (pre-opo), and for the decision between the three patient management 

strategies. In addition, the cost of uncertainty was assessed for the uncertainty surrounding the 

cost; short-term and long-term survival probabilities; short-term survival duration; and the 

probability of complications associated with each patient management strategy. Finally, the 

EVPI was calculated for various combinations of parameters (e.g. economic; clinical) to assess 

the potential worth of different types of research. 

 

The EVPI per surgical procedure was translated into a population value through reference to the 

estimated number of qualifying surgical procedures9 over the expected lifetime of the decision, 

discounted at 6%. It was estimated that 0.4% of all surgical procedures undertaken in the UK 

(3.3 million per annum) could be considered to be qualifying procedures. The lifetime of the 

decision was assumed to be 15 years 10. 

 

                                                 
9 A qualifying surgical procedure is defined as an elective procedure, undertaken on a high-risk elderly patient, in 

cardiovascular surgery; gastrointestinal surgery or general surgery. 

10 Fifteen years was chosen because the date of the original trial was 1993, the policy decision continues to be 

relevant today and it is estimated that it will continue to be relevant for a further 6 years at least. 
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4. RESULTS 
 

4.1 Costs 

 

The mean expected cost associated with patients receiving pre-operative optimisation was 

£9,412 (£10,847 adrenaline, £7,976 dopexamine) whilst the mean expected cost for patients 

receiving standard management was £11,885. 

 

4.2 Life expectancy 

Mortality at 2 years was 29% for patients receiving standard care, compared with 16% in the 

pre-op group (19% - adrenaline, 13% - dopexamine). Translating 2-year mortality into survival 

duration generated a mean of 1.74 years post-surgery for patients in the pre-op group (1.68 - 

adrenaline, 1.80 - dopexamine), compared with 1.48 for patients receiving standard care.  

 

4.3 Cost-effectiveness 

 

Figure 3a illustrates the simulated values of expected incremental costs and survival for the 

comparison between pre-opo and standard patient management. Each point represents one 

iteration from the simulation of incremental expected cost and incremental expected survival 

duration. Based upon the mean of these points, pre-opo dominated standard patient 

management – as, on average, it was both cheaper (saving of £2,473) and more effective 

(additional life-years of 0.26). The majority of the points were located below the horizontal axis 

(negative incremental cost), indicating that the probability that pre-optimisation was cost-saving 

was high (75%). In addition, a considerable proportion of the points were located within 

quadrant II, where pre-op involved both reduced costs and higher survival duration than 

standard care, indicating a reasonable probability that pre-op dominated standard patient 

management (74%).  

 

Figure 3b illustrates the simulated values of incremental expected cost and expected survival 

duration for the comparison between the inotropes. Based upon the mean of these points, pre-

opa was dominated by pre-opd – as, on average, it was both more expensive (£2,871) and less 

effective (reduction in life-years of 0.12). The majority of the points were located within quadrant 

IV, where adrenaline involves higher costs and lower survival duration than dopexamine, 

indicating a reasonable probability that pre-opd dominates pre-opa (42%).  

 
Figure 4a illustrates the cost-effectiveness acceptability curve for pre-opo compared with 

standard patient management. The figure shows that the probability that a policy of pre-
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operative optimisation (either inotrope) was optimal when the decision-maker was unwilling to 

pay anything for an additional life-year (i.e. the probability that it was less costly than standard 

care) was 75%. At a willingness-to-pay of £20,000 per life-year gained, the probability that pre-

opo was optimal is 95.5% (hence the probability that standard patient management is optimal 

was 4.5%). Whilst if the decision-maker was willing to pay £30,000 per life-year gained, the 

probability that pre-opo was optimal was 97.3% (hence the probability that standard patient 

management is optimal is 2.7%). The cost-effectiveness frontier for the decision between pre-

operative optimisation with either inotrope traces the cost-effectiveness curve for pre-opo, due 

to it’s being dominant.  

 

Figure 4b illustrates the cost-effectiveness acceptability curves for the comparison between the 

three patient management strategies. When the decision-maker was unwilling to pay anything 

for an additional life-year, the probability that pre-opd was optimal (i.e. dopexamine is cost 

saving) was 71%. If the decision-maker was willing to pay £20,000 per life-year gained, the 

probability that pre-opd was optimal is 80%, compared with probabilities of 19% and 1% for pre-

opa and standard patient management respectively. Whilst if the decision-maker was willing to 

pay £30,000 per life-year gained, the probability that pre-opo was optimal was 79.7%, compared 

with probabilities of 20% and 0.3% for pre-opa and standard patient management respectively. 

The cost-effectiveness frontier for the decision between the three patient management 

strategies traces the cost-effectiveness curve for pre-opd, due to it’s being dominant.  

 

4.4 Expected value of perfect information 

 

For the a priori decision between standard patient management and a policy of pre-operative 

optimisation (either inotrope) the EVPI was £78 per surgical procedure given a λ value of 

£20,000 per life year, or £50 per surgical procedure given a λ value of £30,000 per life year. 

This translated into a population EVPI of £11 million or £7 million for λ value of £20,000 or 

£30,000 per life year respectively.  

 

The EVPI for the comparison between the three patient management strategies was calculated 

to be £345 per surgical procedure, £48.5m for the population, given a λ value of £20,000 per life 

year. At a λ value of £30,000 per life year, the EVPI was calculated to be £374 per surgical 

procedure, £53 million for the population. Figure 5 illustrates the population EVPI over the full 

range of values of λ. 

 

Figures 6 and 7 illustrate the EVPI per surgical procedure, for individual parameters and groups 
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of parameters, assuming a λ value of £20,000 or £30,000 per life year. This analysis illustrates 

that, given a λ value of £20,000 per life year, the EVPI for costs was £20 per surgical procedure 

(£2.8 million for the population), whilst that for short-term survival (probability and duration) was 

£0.50 per surgical procedure (£ 70,000 for the population). It is of particular interest that the 

partial EVPI was maximised for the combination of short-term survival and economic 

parameters. For a λ value of £20,000 per life year, the EVPI associated with short-term, 

economic parameters was £345 per surgical procedure (£48 million for the population).  

 

5. DISCUSSION 
 

5.1 Results from the pre-trial model 
 

5.1.1 a priori 

The analysis presented here suggests that, before the 1999 trial was undertaken, a policy of 

pre-operative optimisation (either inotrope) was expected to dominate standard management 

(probability 74%). In addition, regardless of the value placed upon a life year gained, the 

probability that pre-opo was optimal, compared with standard care, was high (>75%).  

 

However, this comparison does not inform the decision-maker as to which inotrope to employ. 

Whilst the use of adrenaline as an inotrope had not been investigated or compared with the use 

of dopexamine within a trial environment, it was considered a possible alternative. This strategy 

was included within the model through the incorporation of several assumptions reflecting prior 

views concerning the clinical and cost impact of pre-opa.  This enabled the three strategies to 

be compared, according to information available before the recent trial was undertaken. This 

comparison suggested that pre-opd dominated both standard patient management and pre-opa 

(probability 39%).  In addition, regardless of the value placed upon a life year gained, the 

probability that pre-opd was optimal, compared with standard care, was high (>71%).  

 

Hence, this study showed that, given the levels of information that existed before the 1999 trial, 

a policy of pre-operative optimisation was the optimal choice for managing high-risk surgical 

patients undergoing major elective surgery. The study also showed that decision-makers should 

employ dopexamine, to achieve optimisation.  

 

5.1.2 Uncertainty 

 

The analysis shown in Figure 4b indicates that there was considerable uncertainty surrounding 
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the a priori decision involving the choice between the three methods of patient management. 

The extent of the uncertainty depends upon the decision-makers willingness-to-pay for a life 

year gained. If decision-makers are only interested in costs, and they do not value improvement 

in patients’ life expectancy, the uncertainty (i.e. error probability) associated with the choice of 

pre-opd was 29%. At a λ value of £20,000 per additional life year the uncertainty associated 

with the choice of pre-opd was 20%. This was much higher than would be acceptable by 

standard conventions of significance. However, not implementing pre-opd on the basis of 

adherence to ‘statistical significance’ would result in the continuation of standard patient 

management practices, which had a much lower probability of being optimal (1%). Continuing to 

use standard patient management would result in an expected loss of £10,251 per surgical 

procedure, an estimated £138 million annually.  

 

5.1.3 Value of information analysis 

 

The VOI analysis formally valued the uncertainty in the decision and generated explicit 

valuations that could be compared to the cost of further investigation to determine whether 

additional research was potentially worthwhile.  The EVPI for the whole decision was found to 

be £345 per surgical procedure, or £48m for the whole population, assuming a λ value of at 

least £20,000 per life year. This provides an absolute limit on the worth of further research 

concerning all elements of the decision, at this value of λ. Figure 8 illustrates the relationship 

between the level of uncertainty (as represented by the cost-effectiveness frontier) and the 

expected value of perfect information. As the value of λ increases, the valuation of the 

consequences associated with the uncertainty increases, but the uncertainty (as represented by 

the cost-effectiveness acceptability frontier) falls. The two effects work in opposing directions. 

Here the increased value of the consequences (λ) outweighs the reduction in the uncertainty 

and the value of information increases. Assuming a λ value of at least £30,000 per life year, the 

EVPI for the whole decision was found to be £374 per surgical procedure, or £53m for the whole 

population. 

 

In addition, the partial EVPI analysis identified that the cost of uncertainty was greatest 

surrounding the short-term clinical and economic parameters. Thus a short-term trial, 

incorporating economics, would have the largest potential worth (£48 million). The majority of 

this worth was related to the uncertainty surrounding the costs and survival associated with the 

pre-opa strategy. Research that eliminated these uncertainties would be worth  £37 million, 

compared with just £1.7 million to eliminate the uncertainty surrounding the cost and survival 

associated with pre-opd and standard care. 
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5.2 Limitations 
 

The absence of data to populate important aspects of the model meant that several 

assumptions were required to complete the analysis. The most important of these is the 

absence of any pre-trial data concerning the cost and effectiveness of pre-opa. In order to 

include this strategy, it was necessary to make assumptions concerning the relationship 

between the available data and the required data. The probability of complications for pre-opa 

was modelled using an adjustment factor; the probability of mortality was assumed to be 

unaffected by the inotrope employed; whilst the costs and effects were modelled as equivalent 

to either pre-opd or standard care depending upon the value of the adjustment factor. The use 

of these assumptions had a major impact upon the results of the analysis. The distinctive shape 

observed in figure 3b is due to the use of the adjustment factor, in combination with the switch 

values for cost and effect, which collaborate to produce a bi-modal distribution of expected costs 

and expected survival duration for pre-opa. However, the absence of any data concerning pre-

opa requires that such assumptions are made, and the assumptions used here are considered 

reasonable given the beliefs that existed pre-trial. 

Where early stage modelling is not undertaken, decisions concerning the worth of further 

research, and design issues relating to such research, are necessarily made on the basis of 

assumptions. Although in this situation, these assumptions are implicit.  

 

The second major aspect of the model where assumptions were required to overcome the 

absence of data, was the modelling of long-term outcomes. The use of standard mortality 

statistics to proxy the probability of mortality beyond 28-days post-surgery regardless of the 

complication status and the treatment group restricts the uncertainty incorporated into the long-

term section of the model. Whilst the use of these assumptions can be justified on the basis that 

they are equivalent to the assumptions that are implicit in a short-term trial, the effect on the 

results of the model, in particular the EVPI calculations, must be acknowledged. 

 

In addition, the absence of patient level data concerning cost required the use of Monte Carlo 

simulation to recreate such data. It is hoped that the potential biases introduced by this process 

were overcome by the use of several simulations to generate a series of sets of patient level 

data.  

 

Finally, the absence of data separating the resource use and unit costs has required the use of 

a composite measure. This reduces the flexibility, and restricts the generalisability, of the model.  
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II. TRIAL ANALYSIS WITH VAGUE PRIORS 
 

The pre-trial analysis of the information available to decision-makers before the 1999 trial 

showed that pre-operative optimisation was cost-effective (probability > 75%), and that a policy 

of pre-operative optimisation employing dopexamine was the optimal decision for high-risk 

patients undergoing major elective surgery in the UK (probability > 71%). Failure to implement 

the policy, in favour of continuation of a policy of standard patient management, was estimated 

to cost the UK in excess of £111 million per annum. In addition, the analysis showed that further 

research to reduce the uncertainty surrounding the decision was potentially worthwhile, and 

suggested that the potential worth of research was greatest for a short term clinical trial 

incorporating economic endpoints for all three patient management strategies (£48 million for 

the UK population, over 15 years).  

 

The next stage in the project involved establishing an estimate of the cost-effectiveness of pre-

operative optimisation for high-risk patients undergoing major elective surgery based upon the 

results of the 1999 trial. 

 

1. INTRODUCTION 
 

The 1999 trial compared standard peri-operative patient management with pre-operative 

optimisation, in high-risk patients undergoing major elective surgery (Wilson et al.  1999).  In 

addition, the trial assessed the relative performance of the inotropes - adrenaline and 

dopexamine - given to enhance oxygen delivery.  The study randomised 138 patients to receive 

standard management (n=46); pre-operative optimisation employing adrenaline (n=46) or pre-

operative optimisation employing dopexamine (n=46) (Figure 9). The results showed a 

significant reduction in hospital mortality associated with pre-op (3%) compared with standard 

patient management (17%) and a reduction in morbidity associated with pre-op employing 

dopexamine (30%) compared with that employing adrenaline (53%) and standard patient 

management (61%) (Wilson et al.  1999). This trial did not include a formal study of the cost-

effectiveness of pre-op, although it did identify some important differences in resource 

consumption between the three arms (Wilson et al.  1999). In particular, the use of dopexamine 

was associated with a significantly lower length of hospital stay (Wilson et al.  1999). 

 

The second stage of the analysis involves an economic analysis of the 1999 clinical trial (Wilson 

et al.  1999). The analysis identifies the cost-effectiveness of the three methods of pre-operative 

patient management and details the uncertainty surrounding the policy decision, based purely 

upon the trial results. However, in order to provide a foundation for the next stage of the iterative 
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process, where the trial data is combined with the pre-trial information to provide a fully informed 

analysis of the trial, this analysis was undertaken using Bayesian methods. To allow for the 

possibility of non-conjugate prior beliefs, in the fully informed analysis, the analysis of the trial 

data was conducted within WinBUGS ™. Hence, in addition to detailing the cost-effectiveness 

results of the trial, in isolation, the analysis provides the model structures that are to be used for 

the informed analysis.   

 

2. METHODS 
 

2.1 Trial design  
 

The design, baseline characteristics and clinical results of the study have been published 

elsewhere (Wilson et al.  1999). In brief, the trial included patients undergoing major elective 

surgical procedures in general surgery, vascular surgery or urology who had been identified as 

being at high risk of developing peri-operative complications. This prognosis was based upon 

surgical criteria or the presence of coexisting medical conditions. Whilst it was not possible to 

blind either patients or clinicians to the standard care versus pre-op status, double-blinding was 

employed within the pre-op group concerning the actual inotrope received.  The randomisation 

was stratified by three surgical sub-groups: vascular surgery (30%); surgery for upper 

gastrointestinal malignancy (20%); and other abdominal surgery (50%) (Wilson et al.  1999). 

See Figure 9 for a summary of the patient flows through the original study.   

 
All patients randomised to receive pre-operative optimisation (with either inotrope) were 

admitted to either an intensive care or high dependency care unit at least 4 hours prior to 

surgery. They received haemodynamic monitoring, fluid optimisation and inotrope optimisation 

(employing either adrenaline or dopexamine). The inotropic support was continued for 12-24 

hours post surgery.  Patients randomised to receive standard care received standard peri-

operative patient management, as determined by the surgeon and anaesthetist. At hospital 

discharge, the mortality in the pre-op group was 3% compared with 17% in the standard 

management group (p=0.007). There was a significant reduction in both morbidity and length of 

hospital stay within the pre-op group that received dopexamine (30% morbidity, 13 days per 

patient), compared with both the adrenaline (53%, 19 days per patient) and standard 

management (61%, 22 days per patient) groups.  
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2.2 Data 
 

2.2.1 Resource-use measurement 

The measurement of resource consumption of all patients in the trial was central to the process 

of estimating the differential cost associated with pre-operative optimisation, compared to 

standard patient management, and of pre-optimisation with dopexamine compared to 

adrenaline. Detailed resource-use data were not collected prospectively as part of the original 

trial protocol, hence it was necessary to interrogate, retrospectively, the trial case record forms 

and clinical notes to identify each patient’s NHS resource-use.  

 

The study focused on two key areas of resource-use that were expected to drive cost 

differences: that employed within the initial hospital stay; and that employed in the management 

of subsequent related events. For the initial hospital stay, the resource-use was fully detailed in 

clinical notes. For each patient, data were collected on the length and type of in-patient stay, 

and usage of drugs, interventions, infusions and investigations.  Drugs that patients were taking 

on admission, analgesics and drugs given to help patients sleep were excluded from the 

resource-use profile. For patients randomised to pre-operative optimisation (either inotrope), the 

resource-use profile included the length of the period of optimisation and the fluid employed in 

the process.  

 

Some patients were re-admitted subsequent to the initial hospitalisation. Two independent 

clinicians, blinded to the initial randomisation, assessed whether subsequent admissions were 

related to the initial surgical procedure.  For those that were, resource-use was measured at an 

aggregate level, based upon length of stay.  These data related to the period of 6 months 

following initial surgery, because beyond this period, it was assumed that re-admissions related 

to the original procedure would be minimal. Any additional healthcare resources used over the 

lifetime of those patients who survive are excluded from the analysis.  

 

Mean resource-use data are presented (with standard deviations), by study group, for the period 

of six months following initial surgery. 
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2.2.2 Valuing resource-use 

 

The cost of managing each individual patient was estimated by applying the relevant unit cost 

data to the detailed resource profile compiled for each patient in the study. The unit costs were 

obtained from the NHS hospital where the study was undertaken, in 1999-2000 prices. All 

drugs, including any consumables required to administer them, were based on the British 

National Formulary (British National Formulary, 2000). The costs for all infusions, investigations 

and interventions, included overheads and all consumables required to administer them. Hotel 

costs for the intensive care unit, the high dependency unit and the surgical ward, included fixed 

costs, staff costs, estate costs, overheads and the cost of monitoring equipment. The costs of all 

other equipment were converted into hourly rates, based on their purchase and re-sale prices, 

annual maintenance cost, expected useful life and estimated usage per annum. These were 

included separately on a per patient basis (Drummond et al.  1997). The additional cost of 

optimisation was calculated for each patient in the adrenaline and dopexamine arms, using 

patient specific length of hospital stay and use of fluid, together with use of drugs and 

disposables set by the study protocol. 

 

Given that the aim of the study was to cost different methods of pre-operative patient 

management, the cost of the original surgery was excluded from the analysis. However, the cost 

of any further surgery required to manage a complication or related event, was included. The 

cost of subsequent admissions related to initial surgery was calculated on a per diem basis, 

using the cost of a standard surgical ward including overheads, drugs, infusions, interventions 

and investigations. 

 

Mean costs (with standard deviations) are presented, by study group, for hospitalisation (in each 

type of ward), drugs, interventions, infusions, investigations, pre-operative optimisation and 

related events. In addition, the median cost and interquartile range are provided to highlight any 

skewness in the cost distribution. The mean and standard error, median and interquartile range 

are presented for the total cost for each patient management strategy.) 

 

2.2.3 Survival 

 

Estimates of the mean survival duration in the three arms of the trial are required for the cost-

effectiveness analysis.  These were based upon the area between the survival curves over the 

two-year follow up11 . 

                                                 
11 This involves censoring all surviving patients at two years. 
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3. ANALYSIS 
 

3.1 Bayesian analysis 
 

The economic analysis was undertaken using Bayesian methods. The Bayesian approach starts 

with prior information, concerning the element of interest. As new information becomes available 

the prior information is ‘updated’ with the new data to provide a posterior information position. 

The fundamental difference of this type of analysis to standard methods is the formal inclusion 

of prior information. An estimate of the cost-effectiveness of pre-operative management based 

purely upon the results of the 1999 clinical trial (Wilson et al.  1999) is obtained through the use 

of vague priors.  This allows the data “to speak for itself” (Fryback et al.  2001) and ensures that 

the trial results have a larger influence upon the analysis than the prior beliefs.  

 

The Bayesian analysis was undertaken within the WinBUGS ™ (Windows-based Bayesian 

Inference Using Gibbs Sampling) computer package.  

 

3.2 Cost-effectiveness analysis 
 

As with a Frequentist trial analysis incorporating bootstrapping, the aim of the Bayesian analysis 

is to use the patient level trial data concerning cost and effect to generate a distribution of mean 

cost and mean survival for each treatment group. These distributions are used to address the a 

priori decision; to assess the level of uncertainty and to address the decision concerning 

whether to fund further research to reduce uncertainty.  

 

4. MODEL STRUCTURES 
 

Each of the WinBUGS ™ models incorporates patient level data concerning total cost and 

survival in order to generate posterior distributions of mean cost and mean survival for each 

treatment group. In order to model the results for pre-operative optimisation (with either 

inotrope), a further analysis was undertaken incorporating patient level data for both pre-

operative groups. 
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4.1 Standard model 
 
4.1.1 Survival 

 

The simplest model of survival data is the exponential distribution. For this distribution the 

hazard/failure rate (evrate) is assumed to be constant with respect to time. That is, the individual 

has the same probability of dying at time (time), given that they survived up to that point in time, 

regardless of time. Thus the survival function is given by equation 6: 

 

S(t) = exp (-evrate * time)     Equation 6 

 

The mean survival duration over the period is derived from the area under the curve (equation 

7). 

 

Mean survival duration = ∫
t

dtimetimeS
0

)(    Equation 7 

 

However, the assumption of a constant hazard rate over the period of follow-up was perceived 

to be unrealistic for this example, where the probability of survival during the first 28 days is 

much lower than for the remaining period. Instead, here the patient level survival data was 

modelled using a piecewise exponential distribution. This involved splitting the duration of 

follow-up (2 years) into a number of distinct periods and approximating the survival function in 

each period using a separate exponential function. This required that the hazard rate was 

constant over the period rather than the full timescale. In this analysis, the survival period is split 

into four distinct periods (timegp) (see Figure 10). The first period covers the initial 28 days post 

surgery (the standard length of time used to report outcomes in intensive care). The second 

period extends to six months post surgery (the interval for which complication data and costs 

were available). The third period extends to one year post surgery, and the final period covers 

the entire second year post-surgery.  The mean survival (msurv) in each period is derived from 

the area under the survival curve for the relevant interval, and these are summed to provide the 

overall mean survival duration (tmsurv).  

 

In WinBUGS ™, priors are attached to the log hazard rate (lambda) rather than the 

hazard/failure rate (evrate). Hence, a log hazard rate (lambda) is defined for each time period 

for each treatment group. Each of the log hazard rates (lambda) is modelled as a normal 
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distribution specified by a mean and precision12. In the analysis of the trial data, vague priors 

are specified for the mean (-10) and the precision (1.0 E-2). 

 

lambda = log (evrate)    Equation 8 

 

The model updates using patient data on the survival time in each period (time). Table 7 gives 

an example of the structure of the patient data.  Where the patient (subject) survives the period 

(event = 0), the survival time equals the full length of the period. Where the patient dies within 

the period (event = 1), the survival time equals the number of days spent within the period 

before death. 

 

Posterior distributions are calculated for the hazard rate (evrate); probability of survival to the 

end of each period (surv) and the mean survival time during each period (msurv). See equations 

9 - 11 respectively for these calculations for the first period (upto 28 days post-surgery). 

 

 evrate =e lambda      Equation 9 

 surv = e -evrate*t      Equation 10 

 msurv = (1/evrate)*(1-surv)    Equation 11 

 

In addition, posterior distributions are generated for the overall survival duration, which is 

outcome of interest for the economic study (equation 12).  

 

 tmsurvtx = Σ msurvtx j     Equation 12 

 

The appropriateness of the piecewise exponential approximation for survival can be tested, 

following the analysis, by comparing the results with a bootstrap of actual trial data. 

 

4.1.2 Costs 

 

The patient level cost data is assumed to follow a log normal distribution, due to its’ positive 

nature and positive skew. However, the current version of WinBUGS ™ does not include a log-

normal distribution. As a result, the patient level costs were logged and the log costs, for each 

treatment group, were modelled as normally distributed with a mean (nu.trt) and a precision 

(tau.trt) (equation 13).  

 

                                                 
12 Note that WinBUGS uses the precision (inverse of the variance) to specify a normal distribution.  
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 Log cost ~ N (nu.trt, tau.trt)    Equation 13 

 

Mean of the log cost (nu.trt) 

 

The mean of the distribution of log cost (nu.trt) is, in turn, specified by a normal distribution. This 

distribution represents the second order uncertainty in the log costs, that is the variation in the 

mean log cost. Priors are specified for the mean and the standard deviation of the distribution of 

mean log cost (nu.trt). In the analysis of the trial results, vague priors are specified for the mean 

(0) and precision (1.0E-6) for each treatment group (equation 14). 

 

nu.trt ~ N (0, 1.0E-6)     Equation 14 

 

Precision of the log cost (tau.trt) 

 

The precision of the log cost (tau.trt) represents the first order uncertainty in the prior data, and 

provides an estimate of the extent of variation within the likelihood. In the standard model, the 

standard deviation of the distribution of log cost (sigma.trt) is modelled as a half normal 

distribution specified by a mean and precision 13. This is then converted to give the precision of 

the log cost (see equation 15).  

 

 tau.trt = 1/(sigma.trt)2     Equation 15 

 

Priors are specified for the specified for the mean and precision of the distribution of the 

standard deviation of the log cost. In this analysis of the trial results, vague priors are specified 

for the mean (0) and precision (0.01) for each treatment group (see equation 16).  

 

sigma.trt ~ N (0, 0.01)l(0,)    Equation 16 

 

The model updates using per patient data on the total cost logged (logcost). However, the 

outcome of interest for the economic analysis is the mean cost for each treatment group. In 

order to generate this distribution, it is necessary to transform back from log costs to the original 

monetary scale. This back transformation involves the mean cost (nu.trt) and the variance of the 

log cost (sigmasqd.trt) (see equation 17). 

 

 mean cost (£) = e [nu.trt + (sigmasqd.trt/2)]   Equation 17 

                                                 
13 The use of the half normal truncates the distribution at zero and prevents the occurrence of negative values 
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Note that the back transformation only provides a reasonable estimate of the mean cost if the 

data are log-normally distributed. If this assumption is inappropriate, the back transformation will 

generate inaccurate results.  

 

The WinBUGS ™ code for the standard model is given in Appendix 3. 

 

4.2 Additional model structures 
 

Within the process of updating, WinBUGS ™ handles each node in the model separately and 

independently. Therefore, any relationships between nodes have to be specified within the 

model. Unless defined within the model, there is no opportunity for relationships to be taken into 

account within the analysis.  

 

Within the standard model there is no allowance for a relationship between costs and survival, 

hence the results of this analysis will be uncorrelated.  

 

During the model development process several different approaches to enhance the standard 

model to allow for the incorporation of a relationship between cost and survival were considered. 

These approaches included: 

 

1) Incorporating the relationship with net benefits 

2) Modelling the causal relationship with a regression equation 

3) Modelling the statistical relationship with a frailty term 

 

4.2.1 Incorporating the relationship – the Net Benefit model 

 

One solution to the problem of allowing for the existence of a relationship between cost and 

survival, is to combine the two into one measure, and ‘trap’ the relationship. This can be 

achieved through the use of the net benefit statistic in monetary terms (�) which is calculated 

from the combination of costs and effects, re-scaled into monetary terms through reference to 

society’s willingness-to-pay for health effect (λ) (see equation 18) (Phelps and Mushlin, 1988; 

Claxton and Posnett, 1996; Stinnett and Mullahy, 1998; Tambour et al.  1998; Claxton, 1999). 

 

�t =  (λ * QALYt) - Cost t    Equation 18 
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Converting the patient level data into a measure of net benefit captures any relationship that 

exists between the two. Thus enabling the relationship to be incorporated without the need to 

specify the nature of that relationship.  

 

However, this solution does require that the model be re-specified in terms of net benefits, 

rather than cost and effect. This may be difficult in itself, as there is little guidance as to the 

distributional form of net benefits. Information will be lost during the data translation process and 

it will become impossible to return to the original data. As a result, it will not be possible to 

calculate expected value of information concerning cost and effect separately, and the loss of 

health effect data will make extrapolation within WinBUGS ™ impossible. In addition, the 

combination of the cost and effect data into one measure removes WinBUGS ™ capability for 

applying different weights to the prior evidence for cost and effect. This will not impact upon the 

analysis of the trial results, where vague priors are used, however this restriction will impact 

upon the results of a fully informed analysis, where priors are informed by levels of current 

information. 

  

A further complication, is that the net benefits data is specific to the societal value (λ) used to re-

scale the health effects. In an environment where the societal willingness to pay for health 

effects is known and explicit this would pose no problem. However, where this is not the case 

analysis should be presented to the decision-maker for a range of values for the societal 

willingness to pay for health effects. In these circumstances, the data will need to be translated, 

the model constructed, and the analysis undertaken for every value of λ that is to be considered 

by the decision-maker. In these circumstances, the net benefits solution will be computationally 

cumbersome. 

 

Due to the complexities and limitations associated with the net benefits solution and the 

availability of other (superior) solutions, this solution will not been pursued here.  

 

4.2.2 Modelling the causal relationship – the regression model 

 

The next solution to be considered involved considering the structure and cause of the 

relationship between cost and health effects. In this solution, the factor(s) that the analyst 

expects to affect both cost and health effects (the source(s) of correlation) are identified ex 

ante14. The dataset is then partitioned according to the existence of these factors, with data for 

patients exhibiting the factor(s) analysed separately from data for patients not exhibiting the 

                                                 
14 These factors are often likely to be related to the occurrence of particular events e.g. hospitalisation.  
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factor(s). In this way, the solution maintains some element of the correlation between cost and 

effect. This method is equivalent to the methods for handling correlation within standard 

decision analytic modelling, where correlation between costs and effects is maintained for each 

patient pathway (sequence of events). 

 

Within the modelling of pre-operative optimisation, the development of post-surgical 

complications was considered to be an event that would impact upon both costs and survival. 

As such the dataset was partitioned according to patients’ complication status.  

 

In order to analyse the datasets separately whilst retaining mean cost and mean survival results 

for the treatment group as a whole, the model was structured like a regression equation with the 

addition of a new term to both the survival (beta1 * comp.e) and cost (beta2 * comp.c) equations 

of the standard model. Within the survival equation, the beta1 term for each treatment group 

represented the difference in the overall log hazard rate for those who do and do not experience 

a complication. For the cost equation, the beta2 term for each treatment group represented the 

difference in the mean log cost for those who do and do not experience a complication. Both of 

the beta terms are modelled as normal distributions, specified by a mean and a precision, thus 

allowing flexibility in the impact of complication status upon costs and survival duration.  The 

comp.e and comp.c terms act like dummy variables, representing the existence of 

complications. However, unlike a standard regression equation with dummy variables these 

terms did not take the values zero and one15. Instead, those patients for whom the post-

surgical experience was complication free, were assigned a dummy variable value equal to the 

probability of experiencing no complications in that treatment group. Whilst those patients who 

experienced at least one complication, were assigned a dummy variable value equal to minus 

the probability of experiencing at least one complication, in that treatment group. These values 

were used, in place of the usual values of zero and one, to reduce the time to convergence. 

In addition to the priors specified for the standard model (see section 4.1), the regression model 

requires the specification of prior values for the parameters of the distributions of beta1 and 

beta2. In the analysis of the trial results, both are specified by vague priors for the mean (0) and 

the precision (1.0E-4) for each treatment group.  

As with the standard model, the regression model updates with patient level data concerning 

total costs logged and survival, and generates distributions of mean cost and mean survival for 

each treatment group.  

 

This solution incorporates the important relationships between cost and survival whilst ignoring 

                                                 
15 Although the values of the dummy variables still sum to 1. 
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spurious correlations which would not be expected in repeated samples. Although the solution 

and results will only be as useful as the ex ante identification of the sources of correlation 

between cost and effect. 

 

4.2.3 Modelling the statistical relationship – the frailty model 

 

The next solution to be considered involved the use of a statistical model of the relationship 

between cost and survival. Within the modelling of pre-operative optimisation, this solution was 

implemented through the incorporation of a ‘frailty’ term to both the survival (gamma1) and cost 

(gamma2) equations of the standard model.  

 

For each treatment group, the frailty terms were modelled as a bivariate normal distribution with 

a mean (mu.gamma) and a precision matrix (gamma.T). The mean values of these distributions 

were all set equal to zero, whilst the precision matrices were modelled as Wishart distributions 

(see equation 19).  

 

 

R1,1  R1,2     Equation 19 

R2,1  R2,2  

 

 Where: R1,1 = precision of survival 

   R1,2 = R2,1 = 1/covariance between cost and effect 

   R2,2 = precision of cost 

 

Within WinBUGS ™, the parameters of a Wishart distribution cannot be specified by prior 

distributions and must instead be specified directly and entered as if they were data. For the 

pre-operative optimisation model estimates, based upon the trial data, were used for each 

element of the matrix for each (see equation 20). 

 

 

0.5  0.01     Equation 20 

0.01  0.005  

 

Modelling the frailty terms using the bivariate normal distribution provides a link between the 

cost and survival elements of the model, enabling each to influence the updating of the other. In 

addition, investigation of the frailty terms provides information on the correlation between the 
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cost and the survival (see equations 21 and 22). 

 

Covariance(cost and survival) = 1/ precision(cost and effect)  Equation 21 

 

Correlation (cost and survival) = Covariance(cost and survival)   Equation 22 

                                                     √ Variance(cost) * variance(survival) 

As with the standard model, the frailty model updates with patient level data concerning total 

costs and survival, and generates distributions of mean cost and mean survival for each 

treatment group.  

 

4.2.4 Bivariate regression model 

 

The final solution to be considered involved combining the statistical and the modelling solutions 

within one WinBUGS ™ model. This solution allows the main sources of the correlation to be 

incorporated within the model, using the regression equation format specified in section 4.2.2, 

whilst any residual correlation is incorporated through the use of the frailty term, as specified in 

section 4.2.3. 

 

As this model is a hybrid of the other models it incorporates the structure and prior values 

specified for all of those models.  

 

As with the other solutions, the model updates with patient level data concerning total costs 

and survival, and generates distributions of mean cost and mean survival for each treatment 

group. The results of the combination model can be used to compare the appropriateness of 

the modelling solution and the statistical solution in isolation. If the modelling solution 

incorporates all of the important elements of the relationship between cost and survival then 

the results should compare to those from the combination solution, and the correlation term 

within the combination solution should be negligible.  

 

The WinBUGS ™ code for each of the alternative model structures are given in Appendix 4. 

 

5. RESULTS 
 

5.1 Resource-use 
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Table 8 gives a summary of the key resource-use within the alternative arms of the trial. One 

patient (pre-op with adrenaline, other abdominal sub-group) was excluded from the analysis due 

to the absence of any data concerning resource-use. Patients who received pre-op spent an 

average (sd) of 16 days (12) in hospital at the time of surgery (19 in the adrenaline group, 13 in 

the dopexamine group) compared to 22 days (26) in the standard care group. In addition, 

patients who received pre-op tended to have lower usage of key resources (with those 

randomised to dopexamine having the lowest usage overall).  

 

5.2 Costs 
 

The unit costs of key resources are detailed in Table 9. Table 10 details the costs for the 

standard care group and the pre-op patients, both for the entire group and separately for each 

inotrope. The additional costs of administering pre-op were more than offset by reductions in the 

costs of the initial in-patient stay and in the costs of resources used in post-operative patient 

care. The mean cost (sd) associated with patients receiving pre-opo was £7,261 (£7,390), whilst 

for pre-opa and pre-opd the mean cost (sd) was £8,706 (£8,907) and £5,847 (£5,246) 

respectively. The mean cost (sd) for patients receiving standard management was £10,297 

(£12,039). 

 
5.3 Survival 
In the paper reporting the clinical results of the study (Wilson et al.  1999), an 8% lower absolute 

risk of in-hospital mortality was reported in the pre-op group at hospital discharge. At two years 

post surgery, standard patient management is associated with a mortality of 33% (15 deaths) 

compared with 26% in the pre-optimisation group (24 deaths  - 11 adrenaline, 13 dopexamine) 

(see Figure 10).  

 
The mean survival duration for patients in the pre-op group is 1.68 years (1.74 - adrenaline, 1.62 

- dopexamine), compared with 1.47 years for patients receiving standard care. , compared with 

1.68 in the pre-op group. This compares favourably (<1% difference) with the results of a  

bootstrap analysis of the survival data, which gives a survival of 1.68 years for the pre-op 

patients (1.73 – adrenaline, 1.63 – dopexamine) and a survival of 1.47 years for patients 

receiving standard care.  
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5.4 Cost-effectiveness 
 

For each of the models a total of 20,000 iterations were run, with a burn-in of 10,000 iterations. 

The Bayesian analysis generated a distribution (10,000 values) of mean costs and mean 

survival durations for each of the methods of patient management. These distributions were 

used to address the a priori decision; assess the level of uncertainty surrounding the decision; 

and provide a valuation for further research to reduce the level of uncertainty surrounding the 

decision. As for the pre-trial stage, the analysis was undertaken for the comparison between 

standard patient management and pre-operative optimisation (with either inotrope) and for the 

choice between the three methods for patient management.  

 

5.4.1 Standard model 

 

Figure 11a illustrates the simulated values of mean incremental costs and life years for the 

comparison between pre-op (using either inotrope) and standard care. Based upon the mean of 

these points, pre-opo dominates standard patient management – as, on average, it is both 

cheaper (saving of £3,571) and more effective (additional life-years of 0.21). The majority of the 

points are located below the horizontal axis (negative incremental cost), indicating that the 

probability that pre-optimisation is cost-saving is high (98%). In addition, a considerable 

proportion of the points are located within quadrant II, where pre-op involves both reduced costs 

and higher survival duration than standard care, indicating a reasonable probability that pre-op 

dominates standard patient management (94%).  

 

Figure 11b illustrates the simulated values of mean incremental cost and effect pairs for the 

comparison between the inotropes. The majority of the points are located within quadrant I, 

where adrenaline involves higher costs and higher survival duration than dopexamine. Based 

upon the mean of these points, pre-op employing adrenaline is associated with an ICER of 

£23,936 per life-year gained when compared to pre-op employing dopexamine (incremental cost 

= £2,865; incremental effect =0.12 life-years).  

 

Figure 12a illustrates the cost-effectiveness acceptability curves for pre-opo and standard 

patient management. The figure shows that the probability that pre-op is optimal when the 

decision-maker is unwilling to pay anything for an additional life-year (i.e. the probability that it is 

less costly than standard care) is 98%. If the decision-maker is willing to pay £20,000 per life-

year gained, the probability that pre-op is optimal is 99.3%, hence the probability that standard 

patient management is optimal is 0.7%. This probability falls slightly to 98.8% if the decision-

maker is willing to pay £30,000 per life-year gained. The cost-effectiveness frontier for the 
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decision between pre-operative optimisation and standard patient management, traces the cost-

effectiveness curve for pre-opo due to it being the dominant strategy. 

 

Figure 12b illustrates the cost-effectiveness acceptability curves for the choice between all three 

patient management strategies. When the decision-maker is unwilling to pay anything for an 

additional life-year, the probability that pre-op with dopexamine is optimal (i.e. dopexamine is 

cost saving) is 99.6%.  If the decision-maker is willing to pay £20,000 per life-year gained, the 

probability that pre-op with dopexamine is optimal is 57%, compared with probabilities of 42.8% 

and 0.2% for pre-op with adrenaline and standard patient management respectively. However, if 

the decision-maker is willing to pay £30,000 per life-year gained, the optimal choice switches to 

pre-op with adrenaline, with a probability that it is optimal of 57%, compared with probabilities of 

42.7% and 0.3% for pre-op with dopexamine and standard patient management respectively. 

The cost-effectiveness frontier (not shown) for the choice between the three methods of patient 

management, follows the CEAcc curve for dopexamine up to the point where the a priori 

switches to pre-opa (λ value of £23,936) and then follows the CEAcc curve for pre-opa.   

 

5.4.2 Alternative model structures 

 

Table 11 details the expected mean cost and expected mean survival (with standard errors) for 

each of the different model structures employed for the trial analysis.  The results show that 

when some allowance is made for a relationship between costs and survival duration, the 

expected mean cost (and standard error) falls, whilst the expected mean survival duration (and 

standard error) increases. These results hold across all of the model structures employed, and 

concord with the empirical evidence that there is a small, negative correlation between cost and 

survival (-0.1). 

 

For all of the models, pre-operative optimisation (either inotrope) dominates standard care. 

Hence the a priori choice is pre-opo regardless of the model structure employed. For the 

decision between the three methods of patient management, standard care is dominated by 

both methods of pre-operative optimisation, and pre-opa is more costly and more effective than 

pre-opd in all of the models. Although, the incremental cost-effectiveness ratio associated with 

pre-opa varies between the models – from £12,366 for the regression and frailty model to 

£32,851 for the frailty model. Hence, the a priori choice, between pre-opa and pre-opd, depends 

upon the willingness-to-pay for life-years gained and the model structure employed.  

 

Figures 13 and 14 illustrate how the different model structures impact upon the level of 

uncertainty surrounding the decision.  
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5.5 Expected value of perfect information  
 

For the decision between standard patient management and a policy of pre-operative 

optimisation (either inotrope) the EVPI was £7.66 per surgical procedure given a λ value of 

£20,000 per life year, or £16.51 per surgical procedure, given a λ value of £30,000 per life year. 

These values were translated into population values using the same assumptions as specified 

for the pre-trial analysis, with the exception that the lifetime of the decision was reduced to 9 

years, to take account of the advancement of time between the pre-trial model and the analysis 

of the trial results. The results for the population are £0.78 million and £1.7million respectively. 

 

For the choice between the three methods of patient management, the EVPI is  £871 per 

surgical procedure (£89 million for the population) at a λ value of £20,000 per life year, and 

£1,203 per surgical procedure (£123 million for the population) for a λ value of £30,000 per life 

year (see Figure 15).  

 

6. DISCUSSION 
 

6.1 Results from the trial analysis 
6.1.1 a priori 

 

The analysis of the trial data suggests that pre-operative optimisation (either inotrope) is 

expected to dominate standard management (probability 94%). In addition, regardless of the 

value placed upon a life year gained, the probability that pre-opo is optimal, compared with 

standard care, is high (>97%).  

 

However, this comparison does not inform the decision-maker as to which inotrope to employ 

within the optimisation process and so, decision-makers will be interested in a comparison of the 

three methods of patient management. For this comparison, standard management was 

expected to be dominated by both pre-op management strategies, whilst  pre-op employing 

adrenaline was expected to be both more effective and more expensive than pre-op employing 

dopexamine (with each additional life year costing £23,936).  

 

Hence, the analysis suggests that, given the data available from the trial, a policy of pre-

operative optimisation was the optimal choice for managing high-risk patients undergoing major 

elective surgery. Whilst the choice as to which inotrope to employ to achieve optimisation, 
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depends crucially upon the value that the decision-maker is willing-to-pay for additional life-

years in this patient group. Decision-makers should adopt pre-op employing dopexamine if their 

willingness-to-pay for life years is below the incremental cost-effectiveness ratio associated with 

pre-op employing adrenaline (£23,936), and pre-op employing adrenaline otherwise. 

 

6.1.2 Uncertainty 

 

The analysis shown in Figure 12b indicates that there was considerable uncertainty surrounding 

the a priori decision involving the choice between the three methods of patient management. 

The extent of the uncertainty depends upon the decision-makers willingness-to-pay for a life 

year gained. If decision-makers are only interested in costs, and they do not value improvement 

in patients’ life expectancy, the uncertainty associated with the choice of pre-opd was 0.4%. 

However, at a λ value of £20,000 per additional life year the uncertainty (error probability) 

associated with the choice of pre-opd was 43%. This was much higher than would be 

acceptable by standard conventions of significance. However, not implementing pre-opd on the 

basis of statistical significance would result in the continuation of standard patient management 

practices, that had a much lower probability of being optimal (0.1%). Continuing to use standard 

patient management would result in an expected loss of £7,937 per surgical procedure (an 

estimated £104 million annually). If decision-makers are willing-to-pay £30,000 per life year, the 

a priori decision is to adopt pre-opa, reflecting the fact that as decision-makers are willing to pay 

more for a life-year gained pre-op employing adrenaline (which is both more expensive and 

more effective than dopexamine) becomes more attractive to them. At this value of λ, the 

uncertainty associated with the choice of pre-opa is 43%, and the expected loss associated with 

continual use of standard patient management is £10,217 per surgical procedure (an estimated 

£134 million annually). 

 

6.1.3 Value of information analysis 

 

The VOI analysis formally valued the uncertainty in the decision and generated explicit 

valuations that could be compared to the cost of further investigation to determine whether 

additional research was potentially worthwhile.  Assuming a λ value of £20,000 per life year, the 

EVPI for the whole decision was found to be £871 per surgical procedure, or £89m for the whole 

population. This provides an absolute limit on the worth of further research concerning all 

elements of the decision, at this value of λ. Figure 16 illustrates the relationship between the 

level of uncertainty (as represented by the cost-effectiveness frontier) and the expected value of 

perfect information. As the value of λ increases, upto a value of £23,936, both the uncertainty 
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(as represented by the cost-effectiveness acceptability frontier) and the valuation of the 

consequences associated with the uncertainty increase. The two effects work in the same 

direction to provide a maximum EVPI of £1,265 per surgical procedure ( £130 million for the 

population) at the point where the a priori decision switches from pre-opd to pre-opa.  As the 

value of λ increases beyond this point, the valuation of the consequences associated with the 

uncertainty continues to increase but the uncertainty falls. The two effects work in opposing 

directions. Initially, the reduction in uncertainty outweighs the increased value of the 

consequences (λ), and the value of information falls. However, as the value of λ continues to 

increase, the reduction in uncertainty becomes outweighed by the increased value of the 

consequences (λ). Hence the value of information starts to increase again.  

 

6.2 Comparisons between the model structures 
 

Table 12 details the expected mean cost and expected mean survival (with standard errors) for 

the bootstrap analysis of the trial data (Frequentist analysis). Since a Bayesian analysis 

employing vague priors is equivalent to a Frequentist analysis of trial data, these results can be 

used as the standard by which to compare the results of the different model structures. Overall, 

the standard model gives results that are closer to those of the Frequentist analysis, although 

other model structures may give closer results for particular management strategies. This 

seemingly obtuse result reflects the fact that the correlation between cost and effect is quite low 

and attempting to model it gives ‘worse’ results.   

 

The results of the regression model show, as postulated, that those patients who experience a 

complication post-surgery are expected to have a lower survival (beta1 is negative) and a higher 

cost (beta2 is positive) than those patients whose post-surgical experience is complication free. 

The results of the frailty model suggest a negative correlation (-0.6) between cost and survival 

that exceeds the correlation identified in the trial data. Closer examination of these results 

shows that the standard model and regression model give lower survival duration than the 

models incorporating a frailty element, whilst the standard model and the frailty model give 

higher costs than the models incorporating a regression equation.  

 

Comparison with the results of the Frequentist analysis suggests that the frailty model tends to 

over-estimate the survival duration, whilst the regression model tends to under-estimate the 

costs. Examination of the trial data suggests that this is due to the existence of a complex 

relationship between cost and survival. Where patients die early (within six months) there is a 

positive relationship between cost and survival. However, for patients that survive the initial six 
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months post-surgery, there is a slight negative relationship between cost and survival. This 

reflects the fact that the early deaths are pre-dominantly due to complications, hence prolonging 

survival increases the costs of managing those complications. This effect is compounded by the 

collection of cost data only to six months post-surgery.  It appears that the relationship between 

cost and survival is not adequately picked up by either model. 

 

The results of the regression model incorporating the frailty element illustrate that those patients 

who experience a complication post-surgery are expected to have a lower survival (beta1 is 

negative) and a higher cost (beta2 is positive) than those patients whose post-surgical 

experience is complication free. The extent of the relationship is similar to that of the regression 

model. In addition, the results of the regression model with frailty indicate a smaller negative 

correlation (-0.5) between cost and survival than the frailty model. However, this attempt to 

capture the complex relationship between cost and survival results in ‘worse’ results than any of 

the other models. 

 

In addition, there were convergence problems with the models incorporating the frailty, as exist 

with most variance component models. These problems affected the covariance slightly, and 

had a large impact upon the correlation calculation, which is a function of the co-variance. In 

addition, these models had high autocorrelation between the log hazard rates. There are a 

number of ways that could be investigated to provide a solution to these problems. Firstly, the 

model could be re-parameterised. Here the Wishart prior on the precision matrix, which is 

notoriously sensitive to the prior values, would be replaced by a product normal formulation.  

Secondly, the Markov chain could be thinned. Here a longer chain is run and only one value in 

every x iterations is maintained for the posterior, the remaining values are discarded. Finally, if 

the problem is perceived to be due to the chain getting stuck in a particular area of the 

distribution, then the problem may be resolved through the use of multiple chains with different 

starting values. 

 

Regardless of the differences in the expected results, the CEAcc curves associated with pre-

opo for the standard model and the regression model are almost identical over the whole range 

of values of λ. Both are similar to the CEAcc curve created from the Frequentist analysis, with 

the curves converging as λ increase, reflecting the higher proportion of points where pre-opo is 

more costly and more effective than standard care. The CEAcc curves associated with the 

models incorporating the frailty term diverge as λ increases, reflecting the higher proportion of 

points where pre-opo  is less effective and less costly than standard care. 
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For the choice between the three methods of patient management, the CEAcc frontiers illustrate 

the different ICERs, for pre-opa in comparison with pre-opd, associated with the different model 

structures. Again, the CEAcc frontiers associated with the standard model and the regression 

model are the most similar to that associated with the Frequentist analysis.  

 

Despite the difficulties associated with the different models, the decision was taken to undertake 

the informed analysis for each of the model structures presented here. Although the emphasis 

will be placed upon the results of the standard model and the regression model. 

 

6.3 Limitations of the study 
 

The study has attempted to capture the life-years gained associated with pre-operative patient 

management through the survival duration data, although in the current analysis these have 

been censored at 2 years post surgery. This is a limitation of the study because it 

underestimates the life expectancy of patients in all of the different patient management arms. 

There are other limitations to this study. Firstly, it concentrates upon the health care costs that 

directly affect the hospital, and ignores costs that fall upon other sectors, either directly or 

indirectly.  For example, earlier discharge from hospital may impact upon resource use at a 

general practitioner or patient level as patients receive care at home rather than in hospital. 

Secondly, the study utilised local costs that apply in one centre that may not be representative 

of costs at other UK hospitals, hence the study may not be generalisable to other settings 

without some modification.  Thirdly, retrospective collection of resource data can be a limitation 

to studies. However, in this study the patient notes had been well maintained and over 70% of 

the costs related to in-patient stay about which hospital information systems are generally 

accurate and complete.  Finally, the structure of the models used to analyse the trial results 

have required the use of a composite measure of total cost, rather than separation of the 

resource use from the unit costs. This reduces the flexibility and restricts the generalisability of 

the model, as well as restricting the amount of information available for the calculation of 

parameter EVPI. As a result, EVPI could only be calculated for the whole decision and for the 

uncertainty surrounding costs and survival duration.   

 

6.4 Comparison to the results of previous studies  
 

The results of our study corroborate the cost and cost-effectiveness analyses undertaken in 

previous studies (Shoemaker et al.  1988; Guest et al.  1997). Shoemaker (Shoemaker et al.  

1988) concluded that average hospital charges and patient expenditures were reduced for 

patients receiving pre-op, but did not undertake a formal cost-effectiveness analysis. Guest et al 
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(Guest et al.  1997) provided a detailed analysis of the cost of resources associated with pre-

operative optimisation and standard patient management pre-operatively, intra-operatively, post-

operatively and employed in treating complications. They concluded that the median cost per 

patient and per survivor was lower for the group receiving pre-op (Guest et al.  1997). However, 

the use of medians rather than means reduces the impact of any extreme values on the results, 

and where data are likely to be highly skewed (as costs typically are) the use of medians will not 

facilitate an estimate of the total cost impact across a sample of patients (Briggs and Gray, 

1998). In addition, the use of the number of survivors, at 28 days post-surgery, as the measure 

of effectiveness limits the analysis through the implicit assumption that life expectancy for 

survivors is identical between the groups.   
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III. INFORMED TRIAL ANALYSIS  

 
The results of an economic analysis of the 1999 trial confirmed those of the pre-trial analysis, 

adding to the weight of evidence in support of a policy of pre-operative optimisation. On the 

basis of the 1999 trial pre-operative optimisation was found to be cost-effective (probability > 

97%), although the decision over which inotrope to employ to achieve optimisation was 

dependent upon the value that the decision-maker was willing-to-pay for additional life years in 

this patient group. Where the societal willingness to pay for life years was above £23,367 pre-op 

with adrenaline was cost-effective, otherwise dopexamine was the optimal choice for achieving 

optimisation.  In addition, the value of information analysis concluded that further research was 

likely to be good value for money, with a potential worth of £89 million for the UK population, 

given a λ value of £20,000 per life year. Whilst this analysis “adds” to the weight of evidence in 

support of pre-operative optimisation it does not provide any formal indication of the impact of 

the recent trial on the body of evidence and does not allow any assessment of the overall 

information position following the recent trial. 

 

The final stage of the project involves formally combining the data from the 1999 trial with the 

pre-trial information to produce a ‘post-trial’ information position, which incorporates all of the 

identified information. This process generates a new information position from which  the 

decision-maker can re-address the a priori decision and the decision whether to undertake 

further research.  

 

1. INTRODUCTION 
 

The informed trial analysis involves re-analysing of the recent trial data in the light of the other 

information that was available before the trial commenced. For this analysis, the results of the 

pre-trial model were used to generate informative priors for the identified model structures. The 

results of the informed re-analysis are then used to re-address the policy decisions regarding 

pre-operative management of high-risk patients undergoing major elective surgery. The results 

are used to determine (i) whether, given the evidence, a policy of pre-operative management 

should be adopted and (ii) whether the collection of further information through research is 

potentially worthwhile. In this case, these decisions will be based upon all information available 

to decision-makers following the recent trial.  
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2. COST-EFFECTIVENESS ANALYSIS 
 

2.1 Treatment group 
 

The Bayesian analysis uses patient level trial data concerning cost and effect to generate 

posterior distributions of mean cost and mean survival duration for each treatment group. These 

distributions are used to address the a priori decision; to assess the level of uncertainty and to 

address the decision concerning whether to fund further research to reduce uncertainty.  

 

2.2. Sub-group analysis 
 

In addition to generating posterior distributions for each treatment group, the use of Bayesian 

methods allows the completion of additional analyses of the trial information, for example an 

analysis according to patient sub-group (Spiegelhalter et al.  2000). This is because, unlike in a 

Frequentist analysis where multiple testing increases the chance of a type I error leading to 

problems with power and significance 16, the nature of Bayesian statistics (probability of 

hypothesis given data) lends itself to multiple testing and unplanned analyses (Spiegelhalter et 

al.  2000). These types of analyses may be of interest to decision makers through the provision 

of additional information concerning which, if any, patient groups should be targeted.  

 

In the 1999 trial of pre-operative optimisation the randomisation procedure was stratified by 

surgical sub-group (vascular surgery (v); surgery for upper gastro-intestinal malignancy (u); and 

other abdominal surgery (o)), although the trial did not plan or power for analysis on this basis. 

The use of Bayesian methods for the economic evaluation enabled a sub-group analysis to be 

undertaken on the basis of surgical procedure. As such, posterior distributions of mean cost and 

mean survival duration were also generated for each of the treatment and sub-group 

combinations. Thus enabling the a priori decision and the decision whether to fund further 

research to be addressed at a surgical sub-group level.  

 

3. MODEL STRUCTURES 
 

The models used for the informed re-analysis have the same structures as those used for the 

trial analysis with vague priors. As with the trial analysis with vague priors, each of the 

WinBUGS ™ models incorporated patient level data concerning total cost and total survival 

                                                 
16 In order to maintain the overall type I error, adjustments can be made to the type I error employed within the 

individual hypothesis tests (for example the Bonferroni adjustment).   
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duration in order to generate posterior distributions of mean cost and mean survival duration for 

each treatment group, plus a pre-operative optimisation (with either inotrope) group.  

 

The difference is the replacement of the vague priors with informed priors, specified in 

accordance with the data and results of the pre-trial model. Table 13 provides a summary of the 

informative priors used within each of the model structures. 

 

3.1 Standard model 
 

3.1.1 Survival 

 

Within the standard model, survival data was modelled using a piecewise exponential 

distribution, with four distinct time periods 17. A log hazard rate (lambda) was defined for each 

time period for each treatment group, and each of the log hazard rates (lambda) was modelled 

as a normal distribution specified by a mean and precision. The mean of this distribution 

represents the expected value of the log hazard rate, whilst the precision represents the second 

order uncertainty i.e. the uncertainty surrounding the mean value. For the informed re-analysis, 

the prior estimates of the mean and precision were constructed from the results of the pre-trial 

model.  

 

Whilst the pre-trial model did not include the hazard rate or log hazard rate, it did incorporate the 

probability that survivors at time t survive the period of interest. This probability can then be 

converted to a log hazard rate (see equation 23): 

 

lambdai = log[-log(1-Pi)/timei]        Equation 23 

 

where: Pi = probability of death during interval i,  

  timeI = length of interval i 

 

The Monte Carlo simulation of the pre-trial model generated distributions for each conditional 

survival probability. Each iteration was converted to a log-hazard rate (using equation 23) to 

give a distribution of lambda values. This distribution was then used to provide the mean and 

                                                 
17 The first period covers the initial 28 days post surgery (the standard length of time used to report outcomes in 

intensive care). The second period extends to six months post surgery (the interval for which complication data 

and costs were available). The third period extends to one year post surgery, and the final period covers the 

entire second year post-surgery.   
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precision required by the WinBUGS ™ model. 

 

As with the trial analysis with vague priors, the model updates using patient data on the survival 

time in each period (time) and generates posterior distributions for the hazard rate (evrate); 

probability of survival to the end of each period (surv); mean survival time during each period 

(msurv) and the overall mean survival duration (tmsurv).  

 

3.1.2 Costs 

 

Within the standard model the logged patient level cost data was modelled using a normal 

distribution, specified by a mean (nu.trt) and precision (tau.trt). 

 

 Log cost ~ N (nu.trt, tau.trt)     Equation 24 

 

Mean of the log cost (nu.trt) 

 

The mean of the log cost is itself modelled as a normal distribution, specified by a mean and 

precision. This distribution represents the second order uncertainty in the log costs (i.e. the 

variation in the mean log cost). Priors were specified for the mean and precision of the 

distribution of mean log cost.  

    

A distribution of mean log cost was generated during the Monte Carlo simulation of the pre-trial 

model and this distribution was used to directly determine the prior values for the distribution of 

the mean log cost (nu.trt) required by WinBUGS.   

 

Precision of the log cost (tau.trt) 

 

The distribution of the precision of the log cost (tau.trt) represents the first order uncertainty in 

the prior data, and provides an estimate of the extent of variation within the likelihood. This 

distribution is not modelled directly, but rather through the standard deviation of the log cost 

(sigma.trt) 18. This is then converted to give the precision of the log cost (see equation 25).  

 

   tau.trt = 1/(sigma.trt)2    Equation 25 

 

                                                 
18 The reason for this indirect modelling of the precision of the log cost is that it has been found to speed up time 

to convergence. 
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The distribution of the standard deviation of the log cost (sigma.trt) was modelled using a half 

normal distribution, specified by a mean and precision 19. Prior values were specified for the 

mean and precision parameters of the distribution. 

 

Specification of the priors for this distribution required estimates of the standard deviation in the 

prior data. One such estimate could be obtained direct from the original trial data used to 

populate the pre-trial model, if this data were available. In this case, the original pre-trial data 

was not available. However, this data was recreated in order to produce the bootstrap 

distributions of the mean cost required for the pre-trial model, enabling an estimate of the 

standard deviation to be made. The Monte Carlo simulation used to recreate the patient data 

was employed several (20) times, so as to avoid the bias associated with starting values when 

simulations involve small numbers of iterations. This process provided a distribution of estimates 

of standard deviation that was used to derive the prior values of the parameters of the 

distribution of standard deviation of the log cost (sigma.trt). 

 

As for the trial analysis with vague priors, the model updates using per patient data on the total 

cost logged (logcost) and generates a posterior distribution for the mean monetary cost for each 

treatment group, through the use of a back transformation.  

 

3.2 Additional model structures 
 

3.2.1 The regression model 

 

Within the regression model the dataset was partitioned according to each patient’s 

complication status, whilst a term was added to both the survival (beta1 * comp.e) and cost 

(beta2 * comp.c) equations of the standard model. Within the survival equation, the beta1 term 

for each treatment group represented the difference in the overall log hazard rate for those who 

do and do not experience a complication. For the cost equation, the beta2 term for each 

treatment group represented the difference in the mean log cost for those who do and do not 

experience a complication. Both of the beta terms are modelled as normal distributions, 

specified by a mean and a precision, thus allowing flexibility in the impact of complication status 

upon costs and survival duration. The comp.e and comp.c terms act like dummy variables, 

representing the existence of complications.  

 

In addition to the priors specified for the standard model (see section 3.1), the regression model 

                                                 
19 The use of the half normal truncates the distribution at zero and prevents the occurrence of negative values. 
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requires the specification of prior values for the parameters of the distributions of beta1 and 

beta2.  

 

To specify the priors for the beta1 distribution, estimates were required of the difference in 

overall log hazard rate (olambda) between those who did and did not suffer complications post-

surgery. Whilst the pre-trial model did not include the overall hazard rate or log hazard rate, it 

did incorporate the probability of surviving the period of follow-up, for both those with and 

without complications. These probabilities were then converted to overall log hazard rates (see 

equation 26): 

 

olambda = log[-log(B)/length of follow-up]      Equation 26 

 

where: B = probability of survival till end of follow-up,  

  

For each iteration, the difference between the overall log hazard rates (olambda) for those with 

and without complications was taken, and this distribution was then used to provide the prior 

values of mean and precision for the distribution of beta1, required by the WinBUGS ™ model.  

 

To specify the priors for the beta2 distribution, estimates were required of the difference in mean 

log cost between those who did and did not suffer complications post-surgery. A distribution of 

mean log cost for those with and without complications was generated during the Monte Carlo 

simulation of the pre-trial model, and the difference between these values was calculated for 

each iteration. This distribution of the difference in mean log costs was then used to directly 

determine the prior values for the mean and precision of the distribution of beta2.  

 

As with the trial analysis with vague priors, the regression model updates with patient level data 

concerning total costs logged and survival duration, and generates posterior distributions of 

mean cost and mean survival duration for each treatment group.  

 

3.2.2 The frailty model  

 

The frailty model provided a statistical model of the relationship between cost and survival, 

through the incorporation of a ‘frailty’ term to both the survival (gamma1) and cost (gamma2) 

equations of the standard model.  

 

For each treatment group, the frailty terms were modelled as a bivariate normal distribution with 



 

 
 

109

a mean (mu.gamma) and a precision matrix (gamma.T). The mean values (mu.gamma) of these 

distributions were all set equal to zero, whilst the precision matrices (gamma.T) were modelled 

as Wishart distributions (see equation 27).  

 

 

R1,1  R1,2    Equation 27 

R2,1  R2,2  

 

 Where: R1,1 = precision of survival 

   R1,2 = R2,1 = 1/covariance between cost and effect 

   R2,2 = precision of cost 

 

In addition to the priors specified for the standard model (see section 3.1), the frailty model 

requires information about the prior values of the parameters of the Wishart distribution. These 

parameters cannot be specified by prior distributions and must instead be specified directly and 

entered as if they were data. The informed analysis employed the same estimates for the 

elements in precision matrix as used in the analysis of the trial data with vague priors. 

 

As with the trial analysis with vague priors, the frailty model updates with patient level data 

concerning total costs and survival duration, and generates posterior distributions of mean cost 

and mean survival duration for each treatment group.  

 

3.2.3 Bivariate regression model 

 

The bivariate regression model involved combining the statistical and the modelling solutions 

within one WinBUGS ™  model. This solution allows the main sources of the correlation to be 

incorporated within the model using the regression equation format whilst any residual 

correlation is incorporated through the use of the frailty term.  

 

As this model is a hybrid of the other models it incorporates the structure and prior values 

specified for all of those models.  

 

As with the trial analysis with vague priors, the bivariate regression model updates with patient 

level data concerning total costs and survival, and generates distributions of mean cost and 

mean survival for each treatment group.  
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3.3 Sub-group analysis 
 

The informed sub-group analysis was undertaken using the standard model structure. The 

difference was that the updating process for each sub-group analysis only incorporated the data 

for patients in the sub-group of interest.  

 

The prior values specified for each sub-group analysis were identical to those specified for the 

standard model incorporating all sub-groups (see section 3.1 for details). This represents a prior 

belief that the sub-groups are similar, and exchangeable, in terms of cost and effect, and allows 

the analyses to borrow power across the sub-groups.  

 

4. RESULTS 
 

4.1 Costs 
 

Table 14 summarises the expected costs (mean and standard error) for each treatment group 

for each of the WinBUGS ™  models. 

 

For the standard model, the mean cost (se) associated with patients receiving pre-opo was 

£7,075 (£482), whilst for pre-opa and pre-opd the mean cost (se) was £8,589 (£983) and £5,958 

(£469) respectively. The mean cost (se) for patients receiving standard management was 

£10,180 (£1,342). 

 

4.2 Survival 
 

Table 14 summarises the expected survival duration (mean and standard error) for each 

treatment group for each of the WinBUGS ™  models.  

 
For the standard model, the mean survival duration (se) associated with patients receiving pre-

opo was 1.66 years (0.06), whilst for pre-opa and pre-opd the mean survival duration (se) was 

1.71 years (0.077) and 1.62 years (0.085) respectively. The mean survival duration (se) for 

patients receiving standard management was 1.39 years (0.1). 
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4.3 Cost-effectiveness 
 

For each of the models a total of 20,000 iterations were run, with a burn-in of 10,000 iterations. 

The Bayesian analysis generated a distribution (10,000 values) of mean costs and mean 

survival durations for each of the methods of patient management. These distributions were 

used to address the a priori decision; assess the level of uncertainty surrounding the decision; 

and provide a valuation for further research to reduce the level of uncertainty surrounding the 

decision. As with the pre-trial analysis and the trial analysis with vague priors, the analysis was 

undertaken for the comparison between standard patient management and pre-operative 

optimisation (with either inotrope) and for the choice between the three methods for patient 

management.  

 

4.3.1 Standard model 

 

Figure 17a illustrates the simulated values of mean incremental costs and life years for the 

comparison between pre-op (using either inotrope) and standard care. Based upon the mean of 

these points, pre-opo dominates standard patient management – as, on average, it is both 

cheaper (saving of £3,105) and more effective (additional life-years of 0.27). The majority of the 

points are located below the horizontal axis (negative incremental cost), indicating that the 

probability that pre-optimisation is cost-saving is high (99.4%). In addition, a considerable 

proportion of the points are located within quadrant II, where pre-op involves both reduced costs 

and higher survival duration than standard care, indicating a reasonable probability that pre-op 

dominates standard patient management (98%).  

 

Figure 17b illustrates the simulated values of mean incremental cost and effect pairs for the 

comparison between the inotropes. The majority of the points are located within quadrant I, 

where adrenaline involves higher costs and higher survival duration than dopexamine. Based 

upon the mean of these points, pre-op employing adrenaline is associated with an ICER of 

£29,577 per life-year gained when compared to pre-op employing dopexamine (incremental cost 

= £2,631; incremental effect =0.09 life-years).  

 

Figure 18a illustrates the cost-effectiveness acceptability curve for pre-opo compared with 

standard patient management. The figure shows that the probability that pre-op is optimal when 

the decision-maker is unwilling to pay anything for an additional life-year (i.e. the probability that 

it is less costly than standard care) is 99.4%. If the decision-maker is willing to pay £20,000 per 

life-year gained, the probability that pre-op is optimal is 99.94%, hence the probability that 

standard patient management is optimal is 0.06%. This probability falls slightly to 99.88% if the 
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decision-maker is willing to pay £30,000 per life-year gained. The cost-effectiveness frontier for 

the decision between pre-operative optimisation and standard patient management, traces the 

cost-effectiveness curve for pre-opo due to it’s being dominant.  

 

Figure 18b illustrates the cost-effectiveness acceptability curves for the choice between all three 

patient management strategies. When the decision-maker is unwilling to pay anything for an 

additional life-year, the probability that pre-op with dopexamine is optimal (i.e. dopexamine is 

cost saving) is 99.73%.  If the decision-maker is willing to pay £20,000 per life-year gained, the 

probability that pre-op with dopexamine is optimal is 62.55%, compared with probabilities of 

37.42% and 0.03% for pre-op with adrenaline and standard patient management respectively. 

However, if the decision-maker is willing to pay £30,000 per life-year gained, the optimal choice 

switches to pre-op with adrenaline, with a probability that it is optimal of 50.59%, compared with 

probabilities of 49.34% and 0.07% for pre-op with dopexamine and standard patient 

management respectively. The cost-effectiveness frontier (not shown) for the choice between 

the three methods of patient management, follows the CEAcc curve for dopexamine up to the 

point where the a priori switches to pre-opa (λ value of £29,577) and then follows the CEAcc 

curve for pre-opa.   

 

4.3.2 Alternative model structures 

 

Table 14 details the expected mean cost and expected mean survival duration (with standard 

errors) for each of the different model structures employed for the trial analysis.  The results 

show that when some allowance is made for a relationship between costs and survival duration, 

the expected mean cost (and standard error) falls, whilst the expected mean survival duration 

(and standard error) increases. These results hold across all of the model structures employed, 

and concord with the empirical evidence that there is a small, negative correlation between cost 

and survival (-0.1). 

 

For all of the models, pre-operative optimisation (either inotrope) dominates standard care (see 

Table 15), with a probability in excess of 98% for each of the model structures. Hence the a 

priori choice is pre-opo regardless of the model structure employed 

 

For the decision between the three methods of patient management, standard care is 

dominated by both methods of pre-operative optimisation, and pre-opa is more costly and more 

effective than pre-opd in all of the models. Although, the incremental cost-effectiveness ratio 

associated with pre-opa varies between the models – from £22,738 for the frailty model to 

£34,139 for the regression model. Hence, the a priori choice, between pre-opa and pre-opd, 
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depends upon the willingness-to-pay for life-years gained and the model structure employed.  

 

Figures 19 and 20 illustrate how the different model structures impact upon the level of 

uncertainty surrounding the choice between standard management and pre-operative 

optimisation and the choice between the three methods of patient management respectively.  

 

4.4 Expected value of perfect information  
 

For the decision between standard patient management and a policy of pre-operative 

optimisation (either inotrope) the EVPI was £0.91 per surgical procedure given a λ value of 

£20,000 per life year, or £1.98 per surgical procedure, given a λ value of £30,000 per life year. 

These values were translated into population values using the same assumptions as used for 

the trial analysis with vague priors20. The results for the population are £0.09 million and £0.2 

million respectively. 

 

For the decision between the three methods of patient management, the EVPI is  £652 per 

surgical procedure (£67million for the population) at a λ value of £20,000 per life year, and 

£1441 per surgical procedure (£148 million for the population) for a λ value of £30,000 per life 

year (see Figure 21).  

 

4.5 Sub-groups 
 

4.5.1 Cost-effectiveness 

 

Tables 14 and 15 summarise the expected cost and expected survival duration (mean and 

standard errors) and the incremental cost effectiveness ratios associated with each treatment 

and sub-group combination.    

 

Figures 22 (a, b and c) and 23 (a, b and c) illustrate the simulated values of mean incremental 

cost and life years for the comparison between pre-op (using either inotrope) and standard care, 

and between the inotropes for each of the sub-groups respectively.  A comparison across the 

figures highlights the differences in the mean estimates and in the uncertainty surrounding these 

                                                 
20 Note that the lifetime of the decision used in the re-analysis is 9 years. This is because the re-analysis 

employing informed priors should be undertaken at the same time as the original trial analysis, hence there is no 

advancement of time between these analyses, unlike between the analysis of the pre-trial model and the analysis 

of the trial results. 
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estimates across the three surgical sub-groups. For other abdominal surgery (o) and vascular 

surgery (v) pre-opo dominates standard management (probabilities are 78% and 99% 

respectively), whilst for surgery for upper gastrointestinal malignancy (u) pre-opo is less costly 

and marginally less effective than standard management. However, the incremental cost-

effectiveness ratio associated with standard management exceeds 1.4 million per life year 

gained. In addition, the uncertainty surrounding the estimates is much less for sub-groups o and 

v (see figure 22).  

 

For the choice between the inotropes (figure 23), pre-opa dominates for sub-group o and pre-

opd dominates in sub-group v. Whilst for sub-group u, pre-opd is less costly and less effective 

than pre-opa, which has an associated ICER of £40,787 per life year gained. Again there are 

marked differences in the extent of the uncertainty surrounding the estimates, with less 

uncertainty associated with sub-groups v and o (see figure 23).  

 

Figure 24 illustrates the decision uncertainty associated with the choice between pre-operative 

optimisation and standard patient management, through the cost-effectiveness acceptability 

curve for pre-opo for each surgical sub-group. When the decision-maker is unwilling to pay 

anything for an additional life year the probability that pre-opo is optimal (i.e. probability that pre-

opo is cost-saving) is 80%; 96% and 99% for sub-groups o, u and v respectively. If the decision-

maker were willing to pay 20,000 per life-year gained, this probability increases for sub-groups o 

and v (to 98.5% and 99.99% respectively), but falls dramatically for sub-group u (to 73%). If the 

decision-maker were willing to pay 30,000 per life year gained this probability levels off for sub-

groups o and v, but continues to fall for sub-group u (to 66%). 

Figure 25 illustrates the decision uncertainty associated with the choice between the three 

methods of patient management, through the cost-effectiveness acceptability frontier for each 

surgical sub-group. Due to dominance, the cost-effectiveness frontier traces the cost-

effectiveness curve for pre-opa for sub-group o, and traces the cost-effectiveness curve for pre-

opd for sub-group v. Whilst for sub-group u the cost-effectiveness frontier traces the follows the 

CEAcc curve for pre-opd up to the point where the a priori switches to pre-opa (λ value of 

£40,787 per life year gained) and then follows the CEAcc curve for pre-opa. 

 

4.5.2 Expected value of perfect information 

 

Figure 26 illustrates the expected value of perfect information associated with the decision 

between the three methods of patient management for each of the surgical sub-groups. It can 

be seen that the discrepancy in the levels of decision uncertainty is translated into a 

considerable difference in the EVPI between the three sub-groups, with the EVPI for sub-group 
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u dwarfing that for sub-groups o and v. Given a λ value of £20,000 per life year the EVPI per 

surgical procedure is £1,922 (£39 million for the population21) for sub-group u compared to £79, 

£326 (£2 million and £17 million) for sub-groups v and o respectively. At a λ value of £30,000 

per life year the EVPI per surgical procedure is £3,727 (£75 million for the population) for sub-

group u compared to £253, £463 (£8 million and £24 million) for sub-groups v and o respectively 

(see Table 16).  

 

5. DISCUSSION 
 

5.1 Results from the re-analysis of the trial 
 

5.1.1 a priori 

 

The analysis of the trial data suggests that pre-operative optimisation (either inotrope) is 

expected to dominate standard management (probability 98%). In addition, regardless of the 

value placed upon a life year gained, the probability that pre-opo is optimal, compared with 

standard care, is very high (>99%).  

 

For the comparison between the three methods of patient management, standard management 

was expected to be dominated by both pre-op management strategies, whilst pre-op employing 

adrenaline was expected to be both more effective and more expensive than pre-op employing 

dopexamine (with each additional life year costing £29,577).  

 

Hence, the analysis suggests that, given all of the available data, a policy of pre-operative 

optimisation was the optimal choice for managing high-risk patients undergoing major elective 

surgery. Whilst the choice as to which inotrope to employ to achieve optimisation, depends 

crucially upon the value that the decision-maker is willing-to-pay for additional life-years in this 

patient group. Decision-makers should adopt pre-op employing dopexamine if their willingness-

to-pay for life years is below the incremental cost-effectiveness ratio associated with pre-op 

employing adrenaline (£29,577). 

If the decision-maker were able to differentiate policy on the basis of surgical sub-group, the 

results of the sub-group analysis suggest that pre-operative optimisation should be adopted for 

all patients, with dopexamine employed to achieve optimisation for those undergoing vascular 

                                                 
21 The population values for the sub-groups have been calculated in the same proportions as the trial data, on 

the assumption that the occurrence of each surgical specialty in the population is as it is within the trial data (50% 

sub-group o; 20% sub-group u and 30% sub-group v). 



 

 
 

116

surgery, and adrenaline used for those undergoing other abdominal surgery. For those patients 

undergoing surgery for upper gastrointestinal malignancy the inotrope employed to achieve 

optimisation depends crucially upon the decision-makers willingness to pay for additional life 

years. If this exceeds the ICER associated with pre-opa (£40,787 per life year) then adrenaline 

should be employed in this patient group, otherwise dopexamine is the optimal choice.  

 

5.1.2 Uncertainty 

 

The analysis shown in Figure 18b indicates that there was considerable uncertainty surrounding 

the a priori decision involving the choice between the three methods of patient management. 

The extent of the uncertainty depends upon the decision-makers willingness-to-pay for a life 

year gained. If decision-makers are only interested in costs, and they do not value improvement 

in patients’ life expectancy, the uncertainty associated with the choice of pre-opd was 0.3%. 

However, at a λ value of £20,000 per additional life year the uncertainty associated with the 

choice of pre-opd was 37%. This was much higher than would be acceptable by standard 

conventions of significance. However, not implementing pre-opd on the basis of statistical 

significance would result in the continuation of standard patient management practices, that had 

a much lower probability of being optimal (0.03%). Continuing to use standard patient 

management would result in an expected loss of £8,693 per surgical procedure (an estimated 

£114 million annually). If decision-makers are willing-to-pay £30,000 per life year, the a priori 

decision is to adopt pre-opa, reflecting the fact that as decision-makers are willing to pay more 

for a life-year gained pre-op employing adrenaline (which is both more expensive and more 

effective than dopexamine) becomes more attractive to them. At this value of λ, the uncertainty 

associated with the choice of pre-opa is 48%, and the expected loss associated with continual 

use of standard patient management is £10,966 per surgical procedure (an estimated £144 

million annually). 

 

Figures 22 and 23 illustrate that the extent of the uncertainty surrounding the estimates of mean 

cost and mean survival duration varies considerably between the surgical sub-groups. The 

uncertainty surrounding estimates is greatest for sub-group u, for which there is the least trial 

data (27 patients). Figures 24 and 25 illustrate the extent of the decision uncertainty surrounding 

the choice between pre-operative optimisation and standard treatment, and between the three 

methods of patient management respectively. The figures show that there is a reasonable 

amount of uncertainty associated with the a priori decision in each of the sub-groups, in 

particular sub-group u.  For the choice between the three methods of patient management, if 

decision-makers are only interested in costs, and they do not value improvement in patients’ life 
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expectancy, the uncertainty associated with the a priori choice was 47%, 3% and 0.05% for sub-

groups o, u and v respectively. However, at a λ value of £20,000 per additional life year this 

uncertainty becomes 21%, 46% and 5% respectively. These values are much higher than would 

be acceptable by standard conventions of significance. However, not implementing the a priori 

choice on the basis of statistical significance would result in the continuation of standard patient 

management practices, that had a much lower probability of being optimal (0.3%, 12% and 0% 

respectively). Continuing to use standard patient management would result in an expected 

annual loss of £45 million, £14 million and £72 million respectively. Whilst, if decision-makers 

are willing-to-pay £30,000 per life year, the uncertainty associated with the a priori choice 

increases to 21%, 60% and 9% respectively, and the expected annual losses associated with 

continual use of standard patient management increases to an estimated £63 million, £15 

million and £94 million respectively. 

 

For sub-group o the a priori decision was to adopt pre-operative optimisation employing 

adrenaline. However, if the decision-maker failed to implement the differential policy for this sub-

group, in favour of a universal policy of pre-operative optimisation with dopexamine for all sub-

groups, the expected loss would be £3,136 per surgical procedure, an estimated £20 million per 

annum.  

Comparison of figures 22 and 23 with figures 24 and 25 shows that whilst the uncertainty 

surrounding the estimates is greater for sub-group v than sub-group o, the uncertainty 

surrounding the decision is greater for sub-group o. This illustrates the difference between the 

two types of uncertainty, and reflects the positioning of the mean estimates within the two-

dimensional decision space (incremental costs vs incremental effects). 

  

5.1.3 Value of information analysis 

 

The VOI analysis formally valued the uncertainty in the decision and generated explicit 

valuations that could be compared to the cost of further investigation to determine whether 

additional research was potentially worthwhile.  Assuming a λ value of £20,000 per life year, the 

EVPI for the whole decision was found to be £652 per surgical procedure, or £67m for the whole 

population. This provides an absolute limit on the worth of further research concerning all 

elements of the decision, at this value of λ. Figure 27 illustrates the relationship between the 

level of uncertainty (as represented by the cost-effectiveness frontier) and the expected value of 

perfect information. As the value of λ increases, upto a value of £29,577, both the uncertainty 

(as represented by the cost-effectiveness acceptability frontier) and the valuation of the 

consequences associated with the uncertainty increase. The two effects work in the same 
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direction to provide a maximum EVPI of £1,441 per surgical procedure (£148 million for the 

population) at the point where the a priori decision switches from pre-opd to pre-opa.  As the 

value of λ increases beyond this point, the valuation of the consequences associated with the 

uncertainty continues to increase but the uncertainty falls. The two effects work in opposing 

directions. Initially, the reduction in uncertainty is large and the value of information rises slightly. 

However, as the value of λ continues to increase, the reduction in uncertainty slows and the 

increased value of the consequences (λ) leads VOI to rise more sharply.  

 

The formal valuation of the uncertainty surrounding the a priori decision in each of the sub-

groups provided an explicit valuation of the cost of uncertainty that could be compared to the 

cost of further investigation within the sub-group to determine whether additional research was 

potentially worthwhile. The results indicate that the EVPI per surgical procedure was greatest for 

sub-group u for λ values in excess of £7,000, for λ values below £7,000 the EVPI was greatest 

for sub-group o. This result is maintained for the estimates of population EVPI despite sub-

group u having the smallest population of patients, and reflects the considerable uncertainty 

surrounding the a priori choice between the three methods of patient management in sub-group 

u. 

5.2 Comparison between the model structures 
 

As in the trial analysis with vague priors, the results of the regression model show, as 

postulated, that those patients who experience a complication post-surgery are expected to 

have a lower survival (beta1 is negative) and a higher cost (beta2 is positive) than those 

patients whose post-surgical experience is complication free. The results of the frailty model 

suggest a negative correlation (-0.37) between cost and survival that exceeds the correlation 

identified in the trial data, but is lower than that identified for the trial analysis with vague priors. 

The results of the regression model incorporating the frailty element also illustrate that those 

patients who experience a complication post-surgery are expected to have a lower survival 

(beta1 is negative) and a higher cost (beta2 is positive) than those patients whose post-surgical 

experience is complication free. The extent of the relationship is similar to that of the regression 

model. In addition, this model indicates a negative correlation between cost and survival that is 

smaller (-0.3) than that indicated by the frailty model. This is to be expected, as the frailty 

element in this model is simply used to ‘mop up’ any correlation between cost and effect not 

explained by the regression element of the model. If the frailty term were larger for this model 

than for the standard frailty model it would suggest that the regression model were having a 

negative effect upon the modelling of the correlation.  
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Closer examination of the results shows that the standard model and regression model continue 

to yield a lower survival duration than the models incorporating a frailty element, whilst the 

standard model and the frailty model continue to yield higher costs than the models 

incorporating a regression equation. It is postulated that this is due to the existence of a 

complex relationship between cost and survival within the trial data. Where patients die early 

(within six months) there is a positive relationship between cost and survival. However, for 

patients that survive the initial six months post-surgery, there is a slight negative relationship 

between cost and survival. This reflects the fact that the early deaths are pre-dominantly due to 

complications. Hence prolonging survival increases the costs of managing those complications. 

This effect is compounded by the collection of cost data only to six months post-surgery. As with 

the trial analysis with vague priors, the relationship between cost and survival is not adequately 

picked up by either model. However, the incorporation of prior information into the analysis has 

tempered the results of the models, bringing the estimates from the models closer together. 

 

The convergence problems associated with the models incorporating a frailty element, which 

were experienced within the trial analysis with vague priors continued to occur within the 

informed analysis. These problems affected the covariance slightly, and had a large impact 

upon the correlation calculation, which is a function of the co-variance. In addition, these models 

had high autocorrelation between the log hazard rates. As with the trial analysis with vague 

priors, there are a number of ways that could be investigated to provide a solution to these 

problems.  

 

Regardless of the differences in the expected results, the CEAcc curves associated with pre-

opo are almost identical between the models over the whole range of values of λ (figure 19).  

 

For the choice between the three methods of patient management, the CEAcc frontiers (figure 

20) illustrate the different ICERs, for pre-opa in comparison with pre-opd, associated with the 

different model structures. Again, the CEAcc frontiers are very similar.  

 

5.3 Limitations of the study 

 
The informed re-analysis suffers from the same limitations as discussed for the trial analysis 

with vague priors, including the censoring of survival duration data and use of a composite 

measure for costs. In addition, the re-analysis involves the incorporation of prior information 

from the pre-trial model into the analysis. As such, the re-analysis relies heavily upon the 

structure and results of the pre-trial model. Any limitations within the pre-trial model become 
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limitations for the informed re-analysis e.g. absence of data to model longer term outcomes.   

 

THE VALUE OF THE ITERATIVE FRAMEWORK  
 

The impact and value of an iterative framework for managing the process of health technology 

assessment can be determined through comparison of the various stages of the analysis. A 

comparison of the results and conclusions from the pre-trial model with those of the informed 

Bayesian re-analysis illustrates the impact that the data from the 1999 trial had upon the 

available information position and how this affected decision-making. Whilst, a comparison of 

the results and conclusions from the trial analysis with and without informative priors illustrates 

the impact of formally incorporating the prior information position within the trial analysis rather 

than discarding the information or relying upon informal methods to incorporate it.  
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1. ‘A PRIORI’ DECISION 
 

For the choice between a policy of pre-operative optimisation employing either inotrope (pre-

opo) or standard patient management, the pre-trial analysis; trial analysis with vague priors and 

informed Bayesian re-analysis of the trial all give the same result – a policy of pre-operative 

optimisation employing either inotrope is expected to dominate standard patient management. 

Although, the certainty attached to this statement varies between the analyses – 74% for the 

pre-trial model; 94% for the trial analysis; and 98% for the informed reanalysis.  For the choice 

between the three methods of patient management, the estimate of the cost and effect 

associated with pre-opd and the cost associated with pre-opa are higher for the pre-trial model 

in comparison with the trial data (analysed both with and without the influence of prior evidence), 

whilst the estimate of the effect associated with pre-opa is lower. Hence, for the pre-trial 

analysis pre-opd is expected to dominate pre-opa. Whilst, the results of the uninformed trial 

analysis conclude that pre-opa is more costly and more effective than pre-opd, with an 

associated ICER of £23,936. For the informed Bayesian re-analysis, the larger uncertainty 

surrounding the prior estimates for pre-opa results in the priors exerting less influence within the 

updating process than those for pre-opd. As a result, the estimates of mean cost and mean 

survival duration for pre-opa and pre-opd are driven further apart within the informed Bayesian 

re-analysis, and the ICER associated with the use of pre-opa increases to £29,577.  

 

Hence, whether the a priori decision is affected by the incorporation of prior information depends 

upon the decision-makers willingness-to-pay for life years. If the decision-maker were willing to 

pay below £20,000 or above £30,000 per life year gained the a priori decision resulting from the 

two analyses would be identical. However, if the decision-makers willingness to pay fell between 

the ICERs generated by the two analyses then the incorporation of pre-trial data would affect 

the a priori decision.  

 

2. UNCERTAINTY 
 

Whilst the new trial data and the iterative framework had limited impact upon the a priori 

decision, they had considerable impact upon the extent of the uncertainty surrounding both the 

estimates and the decision.  

 

Table 17 summarises the expected costs and expected survival duration (mean and standard 

error) for each treatment group for each stage in the iterative process. The standard errors 

illustrate that in all cases the uncertainty surrounding the estimates from the pre-trial model 

exceeded those from the analysis of the trial data. As expected, the incorporation of the 
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information available from the pre-trial model into the informed Bayesian re-analysis served to 

further reduce the uncertainty surrounding the estimates of expected cost and expected survival 

duration. Figure 28 provides a graphical illustration of the reduction in the estimate uncertainty, 

between the stages of the framework, for the comparison between the expected cost and 

survival duration of pre-opa and pre-opd 22. Each figure is plotted on the same scale to illustrate 

the shrinking of the uncertainty surrounding the estimates.  

 

However, reductions in estimate uncertainty do not necessarily translate into reductions in 

decision uncertainty. This is due to the presence of two factors that influence the decision 

uncertainty – 1) the estimate uncertainty; and 2) the position of the mean estimates within the 

two-dimensional decision space.  For the choice between pre-opo and standard patient 

management the extent of the decision uncertainty falls between the pre-trial model (25%); the 

trial analysis (3%) and the informed Bayesian re-analysis (2%), regardless of the value of λ. 

However, for the choice between the three methods of patient management the shift in the 

position of the mean estimates for pre-opa and pre-opd, due to the differential weightings 

attached to the prior evidence, results in increased decision uncertainty for the informed 

Bayesian re-analysis, over a specific range of values of λ (λ > £13,000 for comparison with the 

pre-trial model, λ > £26,500 for comparison with the trial analysis).  This is illustrated in Figure 

29 through the CEAcc frontiers associated with each stage of the framework. For the pre-trial 

analysis pre-opd is expected to dominate, hence the CEAcc frontier follows the shape of the 

CEAcc curve for pre-opd. For the trial analyses the CEAcc frontier follows the shape of the 

CEAcc curve for pre-opd up to the point where pre-opa becomes cost-effective (λ = £23,936 for 

the trial analysis, and λ = £29,577 for the informed Bayesian re-analysis). The figure illustrates 

the range of values for λ over which the a priori decision is affected by the inclusion of prior 

information, as well as indicating the decision uncertainty surrounding the a priori for each stage 

of the framework.  

 

3. DECISION CONCERNING WHETHER TO FUND FURTHER INFORMATION  
 

Figure 30 illustrates the EVPI (per surgical procedure) for each stage of the framework for a 

range of λ values. It can be seen that the shift in the position of the mean estimates for pre-opa 

and pre-opd, due to the differential weightings attached to the prior evidence, which resulted in 

increased decision uncertainty for the informed Bayesian re-analysis, leads to an increase in the 

EVPI, over a specific range of values of λ. Hence, for λ values in excess of £16,000, the EVPI is 

                                                 
22 Note that the strange distribution of estimates for the pre-trial model results from the use of the adjustment 

factor to model the cost and effects associated with pre-opa (see chapter 5 for details). 
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larger than for the pre-trial model, whilst for λ values in excess of £27,500 discarding prior 

information leads to an underestimate of the EVPI. However, the valuations are such that 

additional research looks potentially worthwhile at each stage of the framework (Table 18). 

 

CONCLUSIONS 
 

The results of the Bayesian re-analysis with informative priors suggest that, given all the 

information available to them, decision-makers can be confident that pre-operative optimisation 

is a cost-effective method of managing high-risk surgical patients undergoing major elective 

surgery. Whilst the decision concerning which inotrope to employ, to achieve optimisation, 

depends crucially upon the value that the decision-maker is willing to pay for additional life 

years, in this patient group.  In addition, there is more uncertainty surrounding the choice 

between inotropes. The value of information analysis has shown that further research to reduce 

the uncertainty is potentially worthwhile.  

 

In addition, the informed Bayesian re-analysis has illustrated that it is only by formally 

incorporating all of the information available to decision makers through the use of informed 

priors that the proper estimates of cost-effectiveness, upon which appropriate decisions can be 

made, are attained. 



 

 
 

124

Table 1  Summary of clinical trial results 
 
 
 
 

UK trial published 1993 
(cost analysis published 
1996) 
 

(Boyd et al.  1993) (Guest et 
al.  1997) 

US trial 
published 1988
 

(Shoemaker et 
al.  1988) 

 Protocol Control Protocol Control 
Number of patients 53 54 28 30 
Age, yr 69 (61, 77) * 72.5 (66, 80) * 56.4+/-3.1 # 53.4+/-2.5 # 
Sex, males/females (%) 74/26 61/39 75/25 39/61 
ICU days 1.67 (0.79, 5) * 1.8 (0.83, 4.1) * 10.2+/-1.6 # 15.8+/-3.1 # 
Hospital days 12 (7, 40) * 14 (7, 37) * 19.3+/-2.4 # 25.2+/-3.4 # 
Complications 0.68 +/- 0.16 # 1.35 +/- 0.20 #   
Post-operative death no (%) 3 (5.7%) 12 (22.2%) 1 (4%) 10 (33%) 
Patient cost £ 6,525 (£ 4201,£ 17469)* £ 7,525 (£ 4660,£ 16156)* £ 19,127 a$ £ 39,300 a$ 
 
* median (interquartile range) 
# mean +/- standard error of the mean 
a average patient cost 
$ Converted to £UK using an exchange rate of $1.50 to £1 
 
 



Table 2  Frequency of multiple complications from (Shoemaker et al.  1988) 

 
Frequency of multiple complications 
 

Dopexamine Standard 
Treatment 

No of patients   28   30 
No of complications   11   31 
No of complications per patient     0.39     1.03 
No of patients with complications     8        (28%)   15      (50%) 
Patients with 0 complications   20        (71%)   15      (50%) 
Patients with 1 complication     5        (18%)     7      (23%) 
Patients with 2 complications     3        (11%)     3      (10%) 
Patients with 3 complications     0     2      (7%) 
Patients with 4 or more complications     0     3      (10%) 
 
 
 



Table 3  Summary of data concerning events from (Boyd et al.  1993) 
 

 No. of 
patients

No. of 
comps

No. of comps 
per patient – 
all  

No. of comps 
per patient – 
survivors 

No. of 
deaths

% 
deaths

Dopexamine 43 30 0.7 0.48 3 7% 
Standard 
management 

38 55 1.45 0.93 9 23.7% 

 
 



Table 4  Beta distributions for pathway probabilities 

 
 alpha beta probability 
Dopexamine    
Probability of complication 22 21 0.5116 
Probability of 28 day mortality|complication 3 19 0.1364 
Probability of 28 day mortality|no complication 0.1 21 0.0048 
Control    
Probability of complication 27 11 0.7105 
Probability of 28 day mortality|complication 9 18 0.3333 
Probability of 28 day mortality|no complication 0.1 11 0.0091 
Probability of longer term survival    
Probability of mortality (6 months post-
surgery) 

0.26 18.74 0.0138 

Probability of mortality (1 year post-surgery) 0.31 18.43 0.0166 
Probability of mortality (2 years post-surgery) 0.6 17.82 0.0328 
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Table 5  Survival duration for non-survivors (at 28 days) 
 

 Dopexamine  Control 
1 3 3 
2 6 5 
3 8 7 
4 - 8 
5 - 11 
6 - 13 
7 - 17 
8 - 24 
9 - 25 

 
 
 



Table 6  Cost profiles per patient 

 

 
 
 

Dopexamine Control Adrenaline as dopexamine Adrenaline as control
Complications No Complications Complications No Complications Complications No Complications Complications No Complications

9,726.09           6,982.57                 9,218.33           11067.18271 6,797.34               8,873.94                 9,974.45          9,121.13                 
1 6,551.59 9,911.87 6,181.98 11789.21205 4,694.78 11,587.28 16,286.09 10,454.15
2 19,591.49 9,209.72 30,055.58 27926.88691 9,592.09 3,516.15 8,610.64 7,340.63
3 5,449.95 2,564.54 26,061.99 13026.33768 2,601.97 4,139.47 15,862.33 4,660.19
4 6959.324455 4,056.09 9,210.87 20956.12793 5,557.30 2,236.11 4,654.19 2,201.90
5 2421.258375 17,025.02 3,783.34 6846.252628 13,672.27 12,346.97 3,417.04 7,510.07
6 5609.907813 2,966.94 7,950.69 7134.031829 8,985.05 9,566.31 7,954.73 21,867.55
7 17616.39569 3,749.88 3,437.55 19024.21857 6,742.21 9,133.99 9,337.12 18,301.36
8 4802.775846 1,706.26 6,860.85 3012.703921 8,092.28 6,978.26 15,423.41 8,126.67
9 1913.504895 11,251.12 10,399.05 7693.23545 4,966.80 27,400.56 13,335.17 5,229.80

10 9092.920575 4,091.27 8,072.05 2351.769487 3,607.37 1,834.26 9,938.91 5,518.93
11 7461.260783 7,853.63 12,729.83 1978.233375 6258.656062 4,899.33
12 14772.50531 4,400.08 3,082.82
13 9777.273587 3,720.07 5,571.11
14 5244.493753 14,604.65 3,392.02
15 5427.302957 5,129.39 2,825.50
16 5872.798249 4,692.43 2,772.28
17 1785.526339 16,222.57 16,218.88
18 8186.835963 4,726.95 7,095.53
19 42036.37275 6,346.63 8,389.74
20 11521.83329 4692.401403 19,550.37
21 16263.71226 7712.38111 4,625.06
22 5614.960068 11362.56009
23 19,018.44
24 9875.602807
25 3917.916835
26 4241.547334
27 2211.662004



 Table 7  Structure of the survival data for the piecewise exponential  

 
 
 
 

subject event time timegp trt
1 0 28 1 1
1 0 155 2 1
1 0 182 3 1
1 0 365 4 1
2 0 28 1 1
2 0 155 2 1
2 0 182 3 1
2 0 365 4 1
3 0 28 1 1
3 0 155 2 1
3 0 182 3 1
3 0 365 4 1
4 0 28 1 1
4 0 155 2 1
4 1 65 3 1
5 0 28 1 1
5 0 155 2 1
5 0 182 3 1
5 0 365 4 1
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Table 8   Details of the key resource-use collected on patients  

 
 
 

 

 Standard  Adrenaline  Dopexamine  Pre-op (either inotrope)  
Resource Mean (sd) n Median (IQR) Mean (sd) n Median (IQR) Mean (sd) n Median (IQR) Mean (sd) n Median (IQR) 
Length of stay         
Initial hospitalisation         
Ward (hrs) 437.33 

(588.03) 44 
271.00 
(168.25,379) 

387.67 
(317.21) 45 

286.00 
(212,401) 

248.59 
(147.39) 45 

196.50 
(172.75,285.75
) 

317.36 
(254.84) 90 

235.00 
(190,313) 

ICU (hrs) 66.91 
(137.49) 21 

0.00 
(0.00,36.25) 

42.91 
(97.94) 21 

0.00 
(0.00,27) 

35.57 
(93.03) 17 

0.00 
(0.00,24.00) 

39.20 
(95.03) 38 

0.00 
(0.00,25.00) 

HDU (hrs) 25.15 
(53.51) 21 

0.00 
(0.00,27.75) 

25.38 
(28.93) 33 

21.00 
(0.00,25.00) 

24.30 
(18.35) 36 

23.00 
(15.00,30.50) 

24.84 
(24.04) 69 

22.00 
(2.00,26.50) 

Total  529.39 
(624.71) 46 

323.00 
(216.25,500.75
) 

455.96 
(363.17) 45 

311.00 
(239,505) 

308.46 
(194.30) 46 

249.00 
(211.25,330) 

381.40 
(298.09) 91 

287.00 
(213,392) 

Subsequent in-patient stay         
Related to 
surgery 
(days) 

0.70 
(3.10) 3 

0.00 
(0.00,0.00) 

3.18 
(11.63) 4 

0.00 
(0,0) 

0.11 
(0.74) 1 

0.00 
(0.00,0.00) 

1.63 
(8.29) 5 

0.00 
(0.00,0.00) 
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Table 8  continued 
 

 Standard Adrenaline Dopexamine  Pre-op (either inotrope) 
Resource Mean (sd) 

n 
Median (IQR) Mean (sd) n Median (IQR) Mean (sd) n Median (IQR) Mean (sd) n Median (IQR) 

Main Drugs         
Cefotaximine 
1g iv 

10.33 
(10.50) 18 

6.50 
(3.00,15.00) 

9.52 
(5.56) 23 

9.00 
(7.00,14.50) 

8.11 
(5.56) 18 

7.00 
(5.25,11.00) 

8.90 
(5.54) 41 

8.00 
(6.00,12.00) 

Fragmin 2500 
iu sc 

15.92 
(12.36) 38 

12.00 
(8.00,20.00) 

13.76 
(11.38) 37 

11.00 
(7.00,15.00) 

9.66 
(3.70) 41 

9.00 
(8.00,12.00) 

11.60 
(8.48) 78 

9.00 
(8.00,13.00) 

Metronidazole 
500 mg iv 

11.65 
(8.88) 20 

11.50 
(3.00,17.25) 

8.29 
(5.84) 21 

9.00 
(3.00,12.00) 

9.20 
(7.44) 20 

7.00 
(4.50,12.25) 

8.73 
(6.60) 41 

8.00 
(3.00,12.00) 
 

 
 Standard  Adrenaline  Dopexamine  Pre-op (either inotrope)
Resource Mean (sd) 

n 
Median 
(IQR) 

Mean (sd) 
n 

Median 
(IQR) 

Mean (sd) 
n 

Median 
(IQR) 

Mean (sd) 
n 

Median (IQR) 

Main Infusions         
Blood (units) 5.25 

(7.15) 32 
3.00 
(2.00,6.00) 

5.57 
(12.27) 23

2.00 
(2.00,4.00) 

3.62 
(3.28) 26 

2.00 
(1.25,4.75) 

4.53 
(8.69) 49 

2.00 
(2.00,4.00) 

Altracurium  2.00 
(n/a) 1 

2.00 
(2.00,2.00) 

n/a 
(n/a) 0 

n/a 
(n/a,n/a) 

n/a 
(n/a) 0 

n/a 
(n/a,n/a) 

n/a 
(n/a) 0 

n/a 
(n/a,n/a) 

Albumin 4.5% 
250 mls 

12.22 
(14.46) 18 

7.50 
(3.00,15.00
) 

5.63 
(6.15) 19 

3.00 
(1.50,7.00) 

5.41 
(3.97) 27 

4.00 
(3.00,8.00) 

5.50 
(4.92) 46 

4.00 
(2.00,8.00) 
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Table 8  continued 
 

 
Platelets 

8.00 
(n/a) 1 

8.00 
(8.00,8.00) 

5.50 
(2.12) 2 

5.50 
(4.75,7.25) 

3.50 
(3.54) 2 

3.50 
(2.25,4.75) 

4.50 
(2.65) 4 

5.00 
(3.25,6.25) 

Cryoprecipitat
e 

4.00 
(2.83) 2 

4.00 
(3.00,5.00) 

10.00 
(n/a) 1 

10.00 
(10.00,10.0
0) 

4.00 
(n/a) 1 

4.00 
(4.00,4.00) 

7.00 
(4.24) 2 

7.00 
(5.50,8.50) 

 
 Standard  Adrenaline  Dopexamine  Pre-op (either inotrope)
Resource Mean 

(sd) n 
Median 
(IQR) 

Mean 
(sd) n 

Median 
(IQR) 

Mean 
(sd) n 

Median 
(IQR) 

Mean 
(sd) n 

Median (IQR) 

Main investigations         
Full blood 
count 

9.13 
(8.25) 
46 

6.00 
(3.00,12.75
) 

8.71 
(8.32) 
45 

6.00 
(4.00,10.00) 

6.51 
(4.92) 
45 

5.00 
(3.00,8.0
0) 

7.61 
(6.89) 
90 

5.00 
(3.00,9.00) 

Clotting 
studies 

7.06 
(8.26) 
34 

4.00 
(1.00,9.00) 

5.40 
(7.31) 
40 

2.50 
(1.00,5.25) 

4.00 
(5.31) 
36 

2.50 
(1.00,4.0
0) 

4.74 
(6.44) 
76 

2.50 
(1.00,4.00) 

Cross match 3.70 
(4.48) 
46 

2.00 
(2.00,3.75) 

3.23 
(4.92) 
43 

2.00 
(1.00,3.00) 

2.48 
(2.03) 
44 

2.00 
(1.00,3.0
0) 

2.85 
(3.75) 
87 

2.00 
(1.00,3.00)  

Urea and 
Electrolytes 

9.87 
(8.77) 
45 

7.00 
(4.00,13.00
) 

9.00 
(8.87) 
45 

6.00 
(3.00,11.00) 

6.60 
(5.17) 
45 

5.00 
(3.00,8.0
0) 

7.80 
(7.32) 
90 

5.00 
(3.00,9.00)  
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Table 8  continued 
 

 Standard  Adrenaline  Dopexamine  Pre-op (either inotrope)
Resource Mean (sd) 

n 
Median 
(IQR) 

Mean (sd) 
n 

Median 
(IQR) 

Mean (sd) 
n 

Median 
(IQR) 

Mean (sd) 
n 

Median (IQR) 

Main interventions         
Surgery (hrs) 2.67 

(0.82) 6 
2.50 
(2.00,3.00) 

3.67 
(0.58) 3 

4.00 
(3.50,4.00) 

2.75 
(0.96) 4 

2.50 
(2.00,3.25) 

3.14 
(0.90) 7 

3.00 
(2.50,4.00) 

Arterial blood 
gas 
(no. given) 

25.73 
(33.91) 26 

10.50 
(2.25,36.75
) 

14.13 
(21.79) 32

6.00 
(2.75,11.00
) 

11.67 
(13.45) 30 

7.50 
(4.00,13.75
) 

12.94 
(18.13) 62

6.00 
(3.00,11.00
) 

TPN * 9.25 
(4.86) 8 

11.00 
(4.00,12.50
) 

6.50 
(3.15) 6 

5.00 
(4.25,8.75) 

8.50 
(9.19) 2 

8.50 
(5.25,11.75
) 

7.00 
(4.47) 8 

5.00 
(4.00,10.25
) 

Pre-operative optimisation         
Length of  
stay (hrs) 

n/a 
(n/a) n/a 

n/a 
(n/a,n/a) 

9.18 
(6.89) 45 

5.00 
(4.00,16.00
) 

10.30 
(7.17) 46 

6.00 
(4.00,17.75
) 

9.75 
(7.02) 91 

5.00 
(4.00,17.00
) 
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Table 9  Unit costs of the key resources used within the trial 
 

Resource Unit cost  
Length of stay:  
Ward (per hour) £   10.30 
ICU (per hour) £   35.50 
HDU (per hour) £   25.50 
Related stay (per day) £ 257.00 
Main drugs (per dose):  
Cefotaximine 1g iv £    7.01 
Fragmin 2500 iu sc £    2.29 
Metronidazole 500 mg iv £    5.19 
Main infusions:  
Blood (per unit) £   79.79 
Altracurium infusion (mls/hr) £   36.15 
Albumin 4.5% 250 mls (per dose) £   20.93 
Platelets (per unit) £ 141.93 
Cryoprecipitate (per unit) £   24.13 
Main investigations (per test):  
Full blood count £     4.05 
Clotting studies £     7.28 
Cross match £     8.72 
Urea and electrolytes £     3.53 
Pre-operative optimisation  
Adrenaline (per patient) £     2.35 
Dopexamine (per patient) £   24.67 
Hotel costs (per hour) £   21.00 
Disposables (per patient) £ 221.64 
Cost of fluid (per unit) £ 19.93 

 
 

  (see text for source of data) 
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Table 10  Costs in the trial groups – 1999 £ UK 

 Standard  Adrenaline  Dopexamine Pre-op (either inotrope)  
Resource Mean (sd) Median (IQR) Mean (sd) Median (IQR) Mean (sd) Median (IQR) Mean (sd) Median (IQR) 
Length of stay:         
Ward 4504 (6057) 2791 

(1733,3904) 
3993 (3267) 2946 

(2184,4130) 
2560 (1518) 2024 

(1779,2943) 
3269 
(2625) 

2421 
(1957,3224) 

ICU 2375 (4881) 0 (0,1287) 1523 (3477) 0 (0,959) 1263 (3302) 0 (0,852) 1392 
(3374) 

0 (0,888) 

HDU 641 (1364) 0 (0,708) 647 (738) 536 (0,638) 620 (468) 587 (383,778) 633 (613) 561 (51,676) 
Total excl related 7521 (8326) 4413 

(2439,8066) 
6163 (5634) 4061 

(2957,6463) 
4443 (4060) 3372 

(2518,4668) 
5294 
(4950) 

3594 
(2636,5569) 

Related in-patient 
stay 

371 (2072) 0 (0,0) 817 (2989) 0 (0,0) 28 (189) 0 (0,0) 418 (2132) 0 (0,0) 

All drugs 225 (304) 104 (38,288) 149 (188) 77 (31,156) 132 (181) 63 (37,147) 140 (184) 70 (32,154) 
All Infusions 689 (1219) 245 (99,674) 477 (1158) 157 (61,338) 374 (603) 182 (47,335) 425 (916) 176 (60,342) 
All Investigations 255 (257) 164 (77,338) 211 (233) 129 (72,200) 150 (135) 106 (79,171) 180 (191) 113 (77,196) 
All Interventions 525 (1080) 55 (0,618) 291 (658) 28 (7,180) 206 (524) 32 (0,80) 248 (592) 28 (0,126) 
Total cost 
 

10,297 
(12,039) 

5,373 
(2749,11257) 

8,706 
(8,907) 

5,976 
(3875,7765) 

5,848 
(5246) 

4,179 
(3371,6191) 

7,261 
(7390) 

4,623 
(3394,7363) 
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Table 11 Cost and survival results for the different model structures – mean and standard error 
 

 Standard Regression Frailty Regression & Frailty
Pre-opo £6,941 (£538) 

612     (22) 
£6,426 (£386) 
618     (23) 

£6,823 (£532) 
639     (27) 

£6,331 (£407) 
643     (26) 

Standard £10,512 (£2,140)
535     (43.3) 

£9,527 (£1,695) 
534        (45) 

£10,237 (£2,051)
599        (59) 

£9,369 (£1,697) 
576        (54) 

Pre-opd £5,685 (£533) 
592  (34.4) 

£5,392 (£408) 
602     (36) 

£5,584 (£525) 
637     (39) 

£5,383 (£408) 
627     (40) 

Pre-opa £8,551 (£1,119) 
635     (28.1) 

£7,823 (£821) 
647     (29) 

£8,394 (£1,111) 
668        (33) 

£7,688 (£780) 
695     (31) 
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Table 12 Cost and survival results for the Frequentist analysis of trial data  mean 

(standard error) 

 
 
 
  

 Cost -  mean (standard error) 
Survival – mean (standard 
error) 

Pre-opo £ 7,282 ( £ 775) 
613       (22.2)   

Standard £ 10,314  ( £1,748) 
536       (43.5)   

Pre-opd £ 5,844  (£ 760) 
594    (34.2)   

Pre-opa £  8,693  ( £1,310) 
632      (28.5)   

 
 



 

 
 

139

Table 13 Prior values used within the informed analysis 

 Pre-op Standard Adrenaline Dopexamine 
Standard model     
Mean log-
cost 

N (9, 44) N (9,28) N (9,14) N (9,49) 

Precision 
log-cost 

N (0.5, 118) 
I(0,) 

N (0.6, 52) I(0,) N (0.6, 42) I(0,) N (0.4, 97) I(0,)

Lambda 1 N (-5.8, 2.7) N (-4.7, 8.7) N (-5.5, 1.4) N (-6.1, 2.7) 
Lambda 2 N (-11.9, 0.07) N (-11.9, 0.07) N (-11.9, 0.07) N (-11.9, 0.07) 
Lambda 3 N (-11.5, 0.09) N (-11.5, 0.09) N (-11.5, 0.09) N (-11.5, 0.09) 
Lambda 4 N (-10.3, 0.29) N (-10.3, 0.29) N (-10.3, 0.29) N (-10.3, 0.29) 
Regression model     
Beta1 N (0.16, 5.85) N (-0.5, 7.54) N (0.18, 1.97) N (0.12, 6.78) 
Beta2 N (0.36, 0.38) N (3.85, 0.58) N (0.49, 0.19) N (0.23, 0.57) 

 

N = Normal distributed 

N.B. Within WinBUGS™ the Normal distribution is expressed by the mean and the precision 
(the inverse of the variance).  
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Table 14 Mean cost and mean survival duration results for the different model 

structures and sub-groups – mean (standard error) 

Costs (£) 
Survival Duration 
(days) 

Pre-op with 
adrenaline 

Pre-op with 
dopexamine 

Standard 
management 

Pre-op with 
either  

Standard model  8,589     
(983) 
    623       
(28) 

5,958    (469) 
   591      (31) 

10,180  (1,342)
     509       (38)

7,075    (482) 
   606    (  22) 

Regression model  7,951     
(784) 
    628       
(28) 

5,667     (393)
   591       (32)

 9,568   (1,202)
    503        (39)

6,600    (383) 
   607      (22) 

Frailty model  8,534     
(960) 
    641       
(28) 

5,904     (466)
   613       (32)

10,094  (1,348)
     521       (40)

7,008    (483) 
   620      (22) 

Bivariate regression 
model 

 7,911     
(772) 
    640       
(27) 

5,656     (394)
   607       (33)

9,487    (1,220)
   513         (41)

6,566    (383) 
   622      (23) 

Surgical Sub-groups:     
Other abdominal   5,807     

(735) 
    661       
(29) 

5,979    (572) 
   625      (38) 

6,824    (1,125)
   555         (39)

5,799    (459) 
   645      (25) 

Upper GI malignancy 11,079  
(2005) 
     461      
(78) 

7,424    (873) 
   428      (70) 

12,635  (2,032)
     423       (81) 

8,921    (975) 
   422      (54) 

Vascular  11,194 (2025) 
     649    (38) 

5,721    (664) 
   657      (37) 

12,917  (2,044)
     461       (65)

7,918    (848) 
   660      (27) 
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Table 15 ICERs for the different model structures and sub-groups 

 
ICER -  £/life year Pre-op 

with 
adrenaline 

Pre-op with 
dopexamine

Standard 
management

Pre-op 
with 
either  

Standard model 29,577 LC D LC 
Regression model 34,139 LC D LC 
Frailty model 22,738 LC D LC 
Bivariate regression 
model 

25,439 LC D LC 

Surgical Sub-groups:     
Other abdominal  LC D D LC 
Upper GI malignancy 40,787 LC D / 1,421,569 

* 
LC 

Vascular  D  LC D LC 
 
LC = strategy with the lowest cost 
D = strategy is dominated 
* The standard management strategy is dominated by the pre-operative optimisation with 
dopexamine strategy, but has a ICER of 1,421,569 when compared with the pre-operative 
optimisation with either inotrope  
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Table 16 Expected value of perfect information results for the different model 

structures and sub-groups – per surgical procedure and for the UK population  

 
EVPI – (£) per surgery 

λ = 
£20,000 

per surgery 
λ = £30,000 

population 
λ = 
£20,000 

population 
λ = £30,000  

Standard model 652 1441 67 million 148 million 
Regression model 849 1088 87 million 111 million 
Frailty model 588 1333 60 million 137 million 
Bivariate regression 
model 

764 1234 78 million 126 million 

Surgical Sub-groups:     
Other abdominal  326 463   17 million   24 million 
Upper GI malignancy 1922 3727   39 million   75 million 
Vascular  79 253     2 million     8 million 
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Table 17 Mean cost and mean survival duration results for the different stages of the 

iterative framework – mean (standard error) 

 
  

 Cost – mean (se) Survival duration – 
mean (se) 

Pre-trial analysis   
Pre-opo £   9,412  

(£1,949) 
636       (42) 

Standard £ 11,885  
(£3,477) 

541       (50) 

Pre-opd £   7,976  
(£1,407) 

657       (35) 

Pre-opa £  10,180  
(£3,644) 

615       (64) 

Trial analysis   
Pre-opo £   6,941      (£  

538) 
612       (22) 

Standard £ 10,512  
(£2,140) 

535       (43) 

Pre-opd £   5,685      (£  
533) 

592       (34) 

Pre-opa £   8,551  
(£1,119)  

635       (28) 

Informed Bayesian re-analysis   
Pre-opo £   7,075      (£  

482) 
606       (22) 

Standard £ 10,180  
(£1,342) 

509       (38) 

Pre-opd £   5,958      (£  
469) 

591       (31) 

Pre-opa £   8,589      (£  
983) 

623       (28) 
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Table 18 Expected value of perfect information results for the different stages of the 

iterative framework – per surgical procedure and for the UK population 

EVPI – (£) per surgery 
λ = £20,000

per surgery 
λ = £30,000 

population  
λ = £20,000 

population 
λ = 
£30,000  

Pre-trial analysis £ 345 £   374 £48 million £53 million 
Trial analysis £ 857 £ 1203 £89 million £123 

million 
Informed 
Bayesian re-
analysis 

£ 652 £ 1441 £67 million £148 
million 
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Figure 1  The patient management decision 

      Standard Treatment

      Pre-operative optimisation with dopexamine

      Pre-operative optimisation with adrenaline
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Figure 2  Decision tree for each management strategy 
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Figure 3a  Cost-effectiveness plane for pre-operative optimisation vs standard treatment 
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Figure 3b  Cost-effectiveness plane for pre-operative optimisation with adrenaline vs pre-

operative optimisation with dopexamine 
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Figure 4a  Cost-effectiveness acceptability curves showing the probability that pre-

operative optimisation (either inotrope) is optimal, compared with standard 

patient management, for a given willingness to pay for an additional life year 

(λ) 
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Figure 4b  Cost-effectiveness acceptability curves showing the probability that each 

strategy is cost-effective, for a given willingness to pay for an additional life 

year (λ) 
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Figure 5 Expected value of perfect information for the decision between three patient 

management strategies – £ population 
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Figure 6 Population expected value of perfect information for specific parameters of 

the decision at λ = £20k and £30k - £ million 
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Figure 7 Population expected value of perfect information for particular types of trials λ 

= £20k and £30k - £ million 
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Figure 8 EVPI (per surgical procedure) vs CEAcc frontier 
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Morbidity is defined as the % of patients developing one or more of a predefined range of 
complications. 
 
Figure 9  Patient flows through the study  
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Figure 10  Estimation of Piecewise exponential  
 

 

 

 

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700
Survival after surgery (days)

Su
rv

iv
al

 %

28 days 6 months 1 year 2 years

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700
Survival after surgery (days)

Su
rv

iv
al

 %

28 days 6 months 1 year 2 years



 

 
 

157

 

 
 
Figure 11a   Cost-effectiveness plane for pre-operative optimisation vs Standard treatment 
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Figure 11b Cost-effectiveness plane for pre-operative optimisation with adrenaline vs pre-

operative optimisation with dopexamine 
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Figure 12a Cost-effectiveness acceptability curves for the decision between pre-operative 

optimisation (either inotrope) compared with standard patient management 
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Figure 12b Cost-effectiveness acceptability curves for the choice between the three 

methods of patient management strategies.  
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Figure 13 Cost-effectiveness acceptability curves for pre-opo for the different models 

and the Frequentist analysis 
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Figure 14  Cost-effectiveness acceptability frontiers for the choice between the 

three methods of patient management for the different models and the 

Frequentist analysis 
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Figure 15 Expected value of perfect information for the decision between three patient 

management strategies – £ population 
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Figure 16 EVPI (per surgical procedure) vs CEAcc frontier 
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Figure 17a:  Cost-effectiveness plane for pre-operative optimisation vs Standard treatment 
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Figure 17b: Cost-effectiveness plane for pre-operative optimisation with adrenaline vs pre-

operative optimisation with dopexamine 
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Figure 18a: Cost-effectiveness acceptability curve showing the probability that pre-

operative optimisation (either inotrope) is optimal, compared with standard 

patient management, for a given willingness to pay for an additional life-year 

(λ). 
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Figure 18b: Cost-effectiveness acceptability curves showing the probability that each 

management option is optimal for a given willingness to pay for an additional 

life-year (λ). 
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Figure 19 Cost-effectiveness acceptability curves for pre-opo for the different WinBUGS 

models
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Figure 20  Cost-effectiveness acceptability frontiers for the choice between the 

three methods of patient management for the different WinBUGS models  
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Figure 21: Expected value of perfect information for the decision between three patient 

management strategies – £ population 
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Figure 22: Cost-effectiveness planes for pre-operative optimisation vs standard 

treatment – a) Other abdominal b) Upper GI malignancy c) Vascular 
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Figure 23: Cost-effectiveness planes for pre-operative optimisation with adrenaline 

vs  pre-operative optimisation with dopexamine – a) Other abdominal b) 

Upper GI malignancy c) Vascular  
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Figure 24: Cost-effectiveness acceptability curves for pre-opo vs standard patient 

management for each sub-group 
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Figure 25: Cost-effectiveness acceptability frontiers for the choice between the three 

management strategies for each sub-group 
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Figure 26: Expected value of perfect information for the decision between the three 

management strategies – per surgical procedure 
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Figure 27 EVPI (per surgical procedure) vs CEAcc frontier 
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Figure 28: Cost-effectiveness planes for pre-operative optimisation with 

adrenaline vs  pre-operative optimisation with dopexamine for each 

stage of the iterative framework  
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Figure 29: Cost-effectiveness acceptability frontiers for the choice between the three 

management strategies for each stage of the iterative framework 
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Figure 30: Expected value of perfect information for the decision between the three 

management strategies for each stage of the iterative framework -  per 

surgical procedure 
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